
Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 3

Exercise 1 (Computer Architecture)

1. Which are the two esential components of any CPU?

2. Name two other (optional) components a CPU may possess.

3. Which three digital bus systems contains each computer system according to
the Von Neumann architecture?

4. Which tasks are carried out by the three digital bus systems of subtask 3?

5. What is the Front Side Bus (FSB)?

6. Which two components contains the chipset?

7. Name the tasks of the components of the chipset.

Content: Topics of slide set 04 Page 1 of 10



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 2 (Input/Output Devices)

1. What is the fundamental distinction between character and block I/O
devices?

2. Name two examples for character and block devices.

3. Name three possible ways for processes to read data from I/O devices.

•

•

•

4. Name a benefit and a drawback for each possible way from subtask 3.

•

–

–

Content: Topics of slide set 04 Page 2 of 10



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

•

–

–

•

–

–

Exercise 3 (Digital Data Storage)

1. Name one mechanic digital data storage.

2. Name two rotating magnetic digital data storages.

3. Name four benefits of data storage without moving
parts compared with data storage with moving parts.

4. What is random access?

Content: Topics of slide set 04 Page 3 of 10



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

5. Name one non-persistent data storage.

6. The storage of computer systems is distinguished into the categories primary
storage, secondary storage and tertiary storage. Which category or categories
can the CPU access directly?

7. Which category or categories of subtask 6 can the CPU only access via a
controller?

Exercise 4 (Write policies)

1. Name the two basic cache write policies.

2. With which cache write policy of subtask 1 may inconsistencies occur?

3. With which cache write policy of subtask 1 is the system performance lower?

4. With which cache write policy of subtask 1 are so called dirty bits used?

5. For what reason are dirty bits used?

Content: Topics of slide set 04 Page 4 of 10



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 5 (Time-based Command Execution,
Control Structures, Archiving)

1. Program a shell script, which reads two numbers as command line arguments.
The script should check whether the numbers are identical, and print out the
result of the check.

1 #!/ bin/sh
2
3 a=${1}
4 b=${2}
5
6 if [ ${a} -eq ${b} ]
7 then
8 echo " Numbers ${a} and ${b} are identical ."
9 else

10 echo " Numbers ${a} and ${b} are NOT identical ."
11 fi

2. Extend the shell script in a way that if the numbers are not identical, it is
checked, which one of the two numbers is the larger one. The result of the
check should be printed out.

1 #!/ bin/sh
2
3 a=${1}
4 b=${2}
5
6 if [ ${a} -eq ${b} ]
7 then
8 echo " Numbers ${a} and ${b} are identical ."
9 else

10 if [ ${a} -gt ${b} ]
11 then
12 echo "${a} is greater than ${b}."
13 else
14 echo "${b} is greater than ${a}."
15 fi
16 fi

3. Program a shell script, which creates a backup of a directory of your choice.
The script should create an archive file with the file extension .tar.bz2 from
the directory. The archive file should be stored in the directory /tmp. The
name of the archive file should correspond to the following naming scheme:

Backup_<USERNAME>_<YEAR>_<MONTH>_<DAY>.tar.bz2

The fields <USERNAME>, <YEAR>, <MONTH> and <DAY> should be replaced by the
current values.

1 #!/ bin/sh
2

Content: Topics of slide set 04 Page 5 of 10



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

3 DIR =/ tmp/ testdir
4 DATE=$(date +"%Y_%m_%d")
5
6 tar cvjf /tmp/ Backup_$ {USER}_${DATE }. tar.bz2 ${DIR}

4. Program a shell script, which checks if already today an archive file was created
according to the naming scheme of subtask 3. The result of the check should
be printed out in the shell.

1 #!/ bin/sh
2
3 DATE=$(date +"%Y_%m_%d")
4 FILENAME ="/tmp/ Backup_$ {USER}_${DATE }. tar.bz2"
5
6 if [ -f ${ FILENAME } ]
7 then
8 echo " Backup has been created today."
9 else

10 echo "No backup has been created today."
11 fi

5. Write two cron jobs. The first cron job should execute at 6:15 am on every
day (except on weekends) the shell script from subtask 3, which creates the
archive file with the backup. The second cron job should execute at 11:45
am on every day (except on weekends) the shell script from subtask 4, which
checks, whether already today an archive file was created. The output from
the shell scripts should be appended to a file /tmp/backup.log. If the archive
file Backup...tar.bz2 has been created successfully, this should be noted in
the log file /tmp/backup.log. Before each new entry in the file, lines according
to the following pattern (with current values) should be inserted into the log
file /tmp/backup.log.

*****************************
20.11.2013 --- Time: 21:39:51

•

•

•

Content: Topics of slide set 04 Page 6 of 10



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

•

•

•

•

•

•

$ crontab -e # 1. Field: 15. minute of the hour
# 2. Field: 6. hour of the day
# 3. Field: On each day of the month
# 4. Field: In each month of the year
# 5. Field: On week days monday to friday
# 6. Field: Command
15 6 * * 1-5 echo -e "***********************\n`date
+%d.%m.%Y\ ---\ %X`" >> /tmp/Backup-Log.txt &&
/path/to/create_backup_script.sh >> /tmp/backup.log
# 1. Field: 45. minute of the day
# 2. Field: 11. hour of the day
# 3. Field: On each day of the month

Content: Topics of slide set 04 Page 7 of 10



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

# 4. Field: In each month of the year
# 5. Field: On week days monday to friday
# 6. Field: Command
45 11 * * 1-5 echo -e "***********************\n`date
+%d.%m.%Y\ ---\ %X`" >> /tmp/backup.log&&
/path/to/check_for_backup_script.sh >> /tmp/backup.logExercise 6 (Shell Scripts)

1. Program a shell script, which checks for a file, which is specified as an argu-
ment, whether it exists and if it is a file, a directory, a symbolic link, a socket
or a named pipe.

• The script should print out the result of the check.
1 #!/ bin/sh
2
3 FILE=${1}
4
5 if test -e ${FILE}
6 then
7 echo "${FILE} exists ."
8 if test -d ${FILE} ; then
9 echo "${FILE} is a directory ."

10 elif test -L ${FILE} ; then
11 echo "${FILE} is a symbolic link."
12 elif test -S ${FILE} ; then
13 echo "${FILE} is a socket ."
14 elif test -p ${FILE} ; then
15 echo "${FILE} is a named pipe (FIFO)."
16 fi
17 else
18 echo "${FILE} does not exist."
19 fi

2. Extend the shell script from subtask 1 in a way that if the file, which is specified
as an argument, exists, it is checked, if the file could be executed and if write
access would be possible.

1 #!/ bin/sh
2
3 FILE=${1}
4
5 if test -e ${FILE}
6 then
7 echo "${FILE} exists ."
8 if test -x ${FILE} ; then
9 echo "${FILE} is executable "

10 else
11 echo "${FILE} is not executable "
12 fi
13
14 if test -w ${FILE} ; then
15 echo "${FILE} is writable "
16 else
17 echo "${FILE} is not writable "

Content: Topics of slide set 04 Page 8 of 10



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

18 fi
19
20 if test -d ${FILE} ; then
21 echo "${FILE} is a directory ."
22 elif test -L ${FILE} ; then
23 echo "${FILE} is a symbolic link."
24 elif test -S ${FILE} ; then
25 echo "${FILE} is a socket ."
26 elif test -p ${FILE} ; then
27 echo "${FILE} is a named pipe (FIFO)."
28 fi
29 else
30 echo "${FILE} does not exist."
31 fi

3. Program a shell script, which reads so long text on the command line, until it
is terminated by typing END.

• The script should convert the text, which is read in from the command
line, to uppercase.

1 #!/ bin/sh
2
3 while true
4 do
5 read LINE
6 echo ${LINE} | tr a-z A-Z
7 if [ ${LINE} == "END" ]
8 then
9 break

10 fi
11 done

4. Program a shell script, which prints out the number of running processes for
all logged in users.

1 #!/ bin/sh
2 for USER in $(who -s | cut -f1 -d" ")
3 do
4 echo ${USER }:
5 proccount =$(ps h -u ${USER} | wc -l)
6 echo "${ proccount } processes "
7 done

5. Extend the shell script from subtask 4 in a way that that the output is sorted.

• The user with most processes should stand at the beginning.
1 #!/ bin/sh
2
3 TEMP=$( mktemp )
4
5 for USER in $(who -s | cut -f1 -d" ")
6 do
7 proccount =$(ps h -u ${USER} | wc -l)

Content: Topics of slide set 04 Page 9 of 10



Prof. Dr. Oliver Hahm
Operating Systems (WS 24/25)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

8 echo "${USER }: ${ proccount } processes " >> ${TEMP}
9 done

10
11 sort ${TEMP} | uniq
12 rm ${TEMP}

6. Program a shell script, which checks after start every 10 seconds, if a file
/tmp/lock.txt exists.

• Each time after the script has checked the existence of the file, it should
output an appropriate message on the shell.

• Once the file /tmp/lock.txt exists, the script should terminate itself.
1 #!/ bin/sh
2
3 LOCKFILE =/ tmp/lock.txt
4
5 RUNNING =true
6 while ${ RUNNING }
7 do
8 if [ -f ${ LOCKFILE } ]
9 then

10 echo "${ LOCKFILE } found , exiting ..."
11 RUNNING =false
12 else
13 echo "${ LOCKFILE } not found"
14 sleep 10
15 fi
16 done

Content: Topics of slide set 04 Page 10 of 10


	(Computer Architecture)
	(Input/Output Devices)
	(Digital Data Storage)
	(Write policies)
	(Time-based Command Execution, Control Structures, Archiving)
	(Shell Scripts)

