
OPERATING SYSTEMS
System Calls

Prof. Dr. Oliver Hahm

2024-12-05

Operating Systems - System Calls - WS 24/25

AGENDAAGENDA

Privilege Levels

System Calls

System Call: read()

Operating Systems - System Calls - WS 24/25 2 / 18

PRIVILEGE LEVELS

Operating Systems - System Calls - WS 24/25 3 / 18

RESTRICT PROCESSESRESTRICT PROCESSES

How can we restrict processes?

For example, how can we prevent user mode processes

to access memory directly?

Operating Systems - System Calls - WS 24/25 4 / 18

USER MODE AND KERNEL MODEUSER MODE AND KERNEL MODE

x86-compatible CPUs implement four

privilege levels

Objective: Improve stability and security

Each process is assigned to a ring permanently

(stored in register CPL (Current Privilege Level))

Ring 0 (= kernel mode) runs the kernel

processes have full access to the hardware

The kernel can also address physical memory (

Real Mode)

Ring 3 (= user mode) run the applications

processes can only access virtual memory (

Protected Mode)

Modern operating systems use only two privilege levels (rings)

Reason: Some hardware architectures (e.g., Alpha, PowerPC, MIPS) implement only two levels

Consequence: Intel’s most recent x86-s architecture removes ring 1 and 2

⟶

⟶

Operating Systems - System Calls - WS 24/25 5 / 18

SYSTEM CALLS

Operating Systems - System Calls - WS 24/25 6 / 18

How can a process from user space access the

hardware?

Operating Systems - System Calls - WS 24/25 7 / 18

SYSTEM CALLSSYSTEM CALLS

If a user-mode process must carry out a higher privileged task (e.g., access

hardware), it can tell this the kernel via a system call

A system call is a function call in the operating system that triggers a switch from user mode

to kernel mode

Context Switch

A process passes the control over the CPU to the kernel and is suspended until

the request is completely processed

After the system call, the kernel returns the control over the CPU to the user-

mode process

The process continues its execution at the point, where the context switch was

previously requested

Operating Systems - System Calls - WS 24/25 8 / 18

SYSTEM CALL INTERFACESYSTEM CALL INTERFACE

System calls are the interface, which provides the operating system to the

user mode processes

System calls enable the user mode programs among others to create and manage processes

and files and to access the hardware

In other words:

A system call is a request from a user mode process to the kernel in order to use a service of the

kernel

Operating Systems - System Calls - WS 24/25 9 / 18

EXAMPLE OF A SYSTEM CALL: EXAMPLE OF A SYSTEM CALL: ioctl()ioctl()

In Unix-like OS (e.g., Linux) ioctl() allows programs to control the behavior

of I/O devices

ioctl() enables processes to communicate with and control of:

Character devices (Mouse, keyboard, printer, terminals, …)

Block devices (SSD/HDD, CD/DVD drive, …)

Syntax:

ioctl (File descriptor, request code number, integer value or pointer to data);

Typical application scenarios of ioctl():

Adjust terminal settings (window size or mode)

Initialize peripheral devices like a sound card or camera

Controlling file locks

Socket operations

Retrieve status and link information of a network interface

Access sensors via the busCI
2

Operating Systems - System Calls - WS 24/25 10 / 18

SYSTEM CALLS AND LIBRARIESSYSTEM CALLS AND LIBRARIES

Working directly with system calls has two major

drawbacks:

Missing abstractions (e.g., missing error handling)

Portability is poor

Modern operating systems provide an interface towards the system calls in

form of a C library, e.g.,: GNU C library (glibc) on (Linux), Native API ntdll.dll

(Windows)

Image Source: Wikipedia

(Shmuel Csaba Otto Traian, CC-BY-SA-3.0)

The library is responsible for:

Handling the communication between user mode processes and kernel

Context switching between user mode and kernel mode

Advantages which result in using a library:

Increased portability, because there is no or very little need for the user mode processes to

communicate directly with the kernel

Increased security, because the user mode processes can not trigger the context switch to

kernel mode for themselves

⇒

Operating Systems - System Calls - WS 24/25 11 / 18

SYSTEM CALL: READ()

Operating Systems - System Calls - WS 24/25 12 / 18

If a (user mode) application wants to read data from a

file, a system call is required

Before the reading call another system call, open() is required

This call returns a handle, called file descriptor (fd)

The application can neither access the file system

directly nor the underlying storage device

Library system call function:

read(fd, buffer, nbytes);

 read nbytes from the file fd and store it inside buffer⟶

Operating Systems - System Calls - WS 24/25 13 / 18

STEP BY STEP – STEP BY STEP – read(fd, buffer, nbytes);read(fd, buffer, nbytes);

Source of this example Modern Operating Systems, Andrew S. Tanenbaum, 3rd edition, Pearson (2009), P.84-89

Step 9: The exception handler

returns control back to the library

which triggered the software

interrupt

Step 10: This function returns back to

the user mode process, in the way a

normal function would have done it

Step 11: To complete the system call, the user mode process must clean up

the stack just like after every function call

The user process can now continue to operate

Operating Systems - System Calls - WS 24/25 14 / 18

EXAMPLE OF A SYSTEM CALL IN LINUXEXAMPLE OF A SYSTEM CALL IN LINUX

System calls are called like library wrapper functions

The mechanism is similar for all operating systems

In a C program, no difference is visible

#include <syscall.h>1
#include <unistd.h>2
#include <stdio.h>3
#include <sys/types.h>4
int main(void) {5
 unsigned int ID1, ID2;6
 // System call7
 ID1 = syscall(SYS_getpid);8
 printf ("Result of the system call: %d\n", ID1);9
 // Wrapper function of the glibc, which calls the system call10
 ID2 = getpid();11
 printf ("Result of the wrapper function: %d\n", ID2);12
 return(0);13
} 14

$ gcc SysCallBeispiel.c -o SysCallBeispiel
$./SysCallBeispiel
Result of the system call: 3452
Result of the wrapper function: 3452

Operating Systems - System Calls - WS 24/25 15 / 18

file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html
file:///home/oleg/git/teach_ng/opsys/ws24/slides/local-slides/opsys-ws24-07.html

SELECTION OF SYSTEM CALLSSELECTION OF SYSTEM CALLS

fork Create a new child process

waitpid Wait for the termination of a child process

execve Replace a process by another one. The PID is kept

exit Terminate a process

Process management File management Directory management

Miscellaneous

Operating Systems - System Calls - WS 24/25 16 / 18

LINUX SYSTEM CALLSLINUX SYSTEM CALLS

The list with the names of the system calls in the Linux kernel…

is located in the source code of kernel 2.6.x in the file:

arch/x86/kernel/syscall_table_32.S

is located in the source code of kernel 3.x, 4.x and 5.x in these files:

arch/x86/syscalls/syscall_[64|32].tbl or

arch/x86/entry/syscalls/syscall_[64|32].tbl

arch/x86/syscalls/syscall_32.tbl

Tutorials how to implement own system calls

...

1 i386 exit sys_exit

2 i386 fork sys_fork

3 i386 read sys_read

4 i386 write sys_write

5 i386 open sys_open

6 i386 close sys_close

...

https://www.kernel.org/doc/html/v4.14/process/adding-syscalls.html https://brennan.io/2016/11/14/kernel-dev-ep3/

https://medium.com/@jeremyphilemon/adding-a-quick-system-call-to-the-linux-kernel-cad55b421a7b

https://medium.com/@ssreehari/implementing-a-system-call-in-linux-kernel-4-7-1-6f98250a8c38

http://tldp.org/HOWTO/Implement-Sys-Call-Linux-2.6-i386/index.html http://www.ibm.com/developerworks/library/l-system-calls/

Operating Systems - System Calls - WS 24/25 17 / 18

https://www.kernel.org/doc/html/v4.14/process/adding-syscalls.html
https://brennan.io/2016/11/14/kernel-dev-ep3/
https://medium.com/@jeremyphilemon/adding-a-quick-system-call-to-the-linux-kernel-cad55b421a7b
https://medium.com/@ssreehari/implementing-a-system-call-in-linux-kernel-4-7-1-6f98250a8c38
http://tldp.org/HOWTO/Implement-Sys-Call-Linux-2.6-i386/index.html
http://www.ibm.com/developerworks/library/l-system-calls/

SUMMARYSUMMARY
You should now be able to answer the following

questions:

How are different process privileges represented in

hardware?

How can a user mode process execute a higher

privileged task?

How is exception handling being carried out?

Operating Systems - System Calls - WS 24/25 18 / 18

