Operating Systems
Scheduler and Dispatcher

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

November 29, 2022

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 1/49

https://teaching.dahahm.de

B Process Switching
m Dispatcher
m Scheduling

B Scheduling Methods (Algorithms)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 2/49

Process Switching
°

Agenda

B Process Switching
m Dispatcher
m Scheduling

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 3/49

Process Switching
€000

Agenda

B Process Switching
m Dispatcher

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 4/49

Process Switching
0000

Dispatching and Scheduling

m Tasks of multitasking operating systems are among others:

m Dispatching: Assign the CPU to another process (process switching)
m Scheduling: Determine the order of process execution and the exact
point in time when the process switch occurs

m The dispatcher carries out the state transitions of the processes

Performance

m The scheduler may run ...
m periodically (e.g., on Linux)
m for every interrupt (e.g., on RIOT)

= s called frequently and hence, should be as efficient as possible
m Every call to the scheduler may trigger the dispatcher to run
= Must be efficient as well

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 5/49

Process Switching
0000

The Dispatcher

We already know. . .
= During process switching, the dispatcher removes the CPU from the running process and assigns it to the
process, which is the first one in the queue
m For transitions between the states ready and blocked, the dispatcher removes the corresponding process
control blocks from the status lists and accordingly inserts them new
= Transitions from or to the state running always imply a switch of the process, which is currently executed by
the CPU

If a process switches into the state running or from the state running to
another state, the dispatcher needs to...
m back up the context (register contents) of the executed process in the
process control block
m assign the CPU to another process

m import the context (register contents) of the process, which will be
executed next, from its process control block

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 6/49

Process Switching

[e]e]e])

Idle Process

£ Windows Manager,
m Modern processors provide an idle b Gt W Erifmie Gy
State App\icationsl Pracesses |Performance Metwarking | Users
.. Image MNarn; User Name CPU Memlsage
m If no process is in the state ready an o
. . spoolsy.exe SYSTEM oo 4,236 K
idle process gets the CPU assigned nscrify v BN o0 L904K
swchost.exe LOCAL SERVICE ls) 4,292 K
taskmngr. BNC il 3,816 K
Th d| H | d t sischngr:.::: METWORK SERVICE 00 3,320 K
u €l € prOCeSS IS a Ways rea y Y explorer,exe BNC ls) 12,876 K
TAr It. SYSTEM il 8,196 K
run and has the lowest pI’IOI’Ity Zi“c?.”nitiii SYSTEM il 25,212K
alg.exe LOCAL SERVICE il 3,38K
. . host. NETWORK SERVICE 00 3,960 K
m On most operating systems the idle rvchost exe SyTEH W ek
N Isass.exe SYSTEM il 4,220
process puts the CPU into a services.exe SHSTEM 00 308K
. logan. SYSTEM il 1,352 K
ower-saving mode ::?s:.g:;‘eexe SYSTEM il 2,872K
p g
WIIDIYSE, B8 SYSTEM oo 4,958 K
. . SMsS . Bxe SYSTEM oo W6 K
m For each CPU core (in hyperthreading mseer e syStEn m___smec ¥
systems for each logical CPU) a Han ressss ron s
SYStem Idle process eXISts Processes: 20 CPU Usage: 0% Commit Charge: 97M § 3943M

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 7/49

Process Switching
0000

Agenda

B Process Switching

m Scheduling

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 8/49

Process Switching
0000

Scheduling Criteria and Scheduling Strategies

m The scheduler of an operating system specifies the execution order of
the processes in the state ready
m The best scheduling strategy depends on the use case
m No scheduling strategy. ..
® is optimally suited for every system and
B can take all scheduling criteria optimal into account.
m The scheduling strategy is always a tradeoff between different
scheduling criteria

Scheduling criteria

Scheduling criteria are among others CPU load, response time (latency),
turnaround time, throughput, efficiency, real-time behavior
(compliance with deadlines), waiting time, overhead, fairness,
consideration of priorities, even resource utilization. . .

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 9/49

Process Switching
00®00

Non-preemptive and preemptive Scheduling

m Two types of scheduling strategies exist
m Non-preemptive scheduling or cooperative scheduling
B Any running process will either run until completion or voluntarily yields
m Problematic: A process may occupy the CPU for as long as it wants
m Examples: Windows 3.x, MacOS 8/9, Windows 95/98/Me (for 16-Bit
processes)

m Preemptive scheduling
m The CPU may be removed from a process before its execution is
completed
m Drawback: Higher overhead compared with non-preemptive scheduling
m Examples: Linux, MacOS X, Windows 95/98/Me (for 32-Bit
processes), Windows NT (incl. XP/Visa/7/8/10/11), FreeBSD, RIOT

Preemptive Scheduling in RIOT

In RIOT a running process is only removed from the run queue if a process with a higher priority becomes ready to
run.

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 10/49

Process Switching
000®0

Performance Metrics

Waiting Time The time a process has to wait before getting the CPU
assigned

CPU Time The time that the process needs to access the CPU to complete
its execution

Runtime =, lifetime" = time period between the creation and the
termination of a process = (CPU time + waiting time)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 11/49

Process Switching
ooooe

Impact on the overall Performance of a Computer

m This example demonstrates the impact of the scheduling method used
on the overall performance of a computer

m The processes P, and Pg are to be executed one after the other

m If a short-running process runs before a long-running

Process | CPU process, the runtime and waiting time of the long
time process process get slightly worse
A 24 ms m If a long-running process runs before a short-running
B 2 ms process, the runtime and waiting time of the short

process get significantly worse

Execution Runtime Average Waiting time Average
order A B runtime A B waiting time
Pa, Pg 24ms 26ms # =25ms Oms 24ms OJEA =12ms
Pg, P4 26ms 2ms X —14ms 2ms Oms M2 = 1ms

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 12/49

Scheduling Methods (Algorithms)
©0000000000000000000000A000000000000

B Scheduling Methods (Algorithms)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 13/49

Scheduling Methods (Algorithms)
08000000000000000000000A000000000000

Scheduling Methods

m Several scheduling methods (algorithms) exist
m Each method tries to comply with the well-known scheduling criteria
and principles in varying degrees
m Some scheduling methods:

m Priority-driven scheduling

First Come First Served (FCFS) = First In First Out (FIFO)
Last Come First Served (LCFS)

Round Robin (RR) with time quantum
Shortest/Longest Job First (SJF/LJF)
Shortest/Longest Remaining Time First (SRTF/LRTF)
Highest Response Ratio Next (HRRN)

Earliest Deadline First (EDF)

Static multilevel scheduling

Multilevel feedback scheduling

Completely Fair Scheduler (CFS)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 14/49

Scheduling Methods (Algorithms)
00800000000000000000000A000000000000

Modern operating systems often implement several scheduling methods

m In Linux e.g., each processes is assigned to a specific scheduling method
m For real-time processes. . .

m SCHED_FIFO (priority-driven scheduling, non-preemptive)
m SCHED_RR (preemptive)
m SCHED_DEADLINE (EDF scheduling, preemptive)

m For ,normal* processes. ..

m SCHED_OTHER (default Linux time-sharing scheduling) implemented
as. .

m Multilevel Feedback Scheduling (until Kernel 2.4)
m O(1) scheduler (Kernel 2.6.0 until 2.6.22)
m Completely Fair Scheduler (since Kernel 2.6.23)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 15/49

Scheduling Methods (Algorithms)
00080000000000000000000A000000000000

Priority-driven Scheduling

m Processes are executed according to their priority (= importance or
urgency)
m The highest priority process in state ready gets the CPU assigned

m The priority may depend on various criteria, such as static (assigned)
priority level, required resources, rank of the user, demanded real-time
criteria,. . .

m Can be preemptive and non-preemptive

m The priority values can be assigned static or dynamic

m Static priorities remain unchanged throughout the lifetime of a process
and are often used in real-time systems

m Dynamic priorities are adjusted from time to time
= Muiltilevel feedback scheduling (see slide 43)

m Risk of (static) priority-driven scheduling: Processes with low priority
values may starve (= this is not fair)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 16/49

Scheduling Methods (Algorithms)
00008000000000000000000A000000000000

Priority-driven Scheduling

Queue 0 Termination
assign the CPU >
—— [[[[[[F—5— o
Queue 1
— [[[[[] F
Queue 2
— [[[[[] F
Creation .
—) .
Queue n
— [[[[[
P Resign the CPU
)
_ Wait for event

e L || | | | |

occurs Waiting queue for processes
in state blocked

Source: William Stallings. Operating Systems. 4th edition. Prentice Hall (2001). P.401)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher - WS 22/23 ~ 17/49

Scheduling Methods (Algorithms)
00000®00000000000000000A000000000000

Priority-driven Scheduling — Example

m Four processes shall be | Process | CPU time | Priority
processed on a system with a A 8 ms 15
single CPU B 4 ms 3

m All processes are at time C 7 ms 4
point 0 in state ready D 13 ms)

m Execution order of the
processes as Gantt chart _E >
(time“ne) (I) é 1I0 1I5 2I0 2I5 3I0 [ms]

m Runtime of the processes m Waiting time of the processes

’Process‘A‘B‘C‘D‘ ’Process ‘A‘B‘C‘D‘

[Runtime | 32 | 4 | 11| 24 |""® [Waiting time | 24 | 0 | 4 | 11 |

24+0+4+11 _ g 75 mg
) =0.

runtime = 32E4+£11424 — 17,75 mg Avg. waiting time =

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 18/49

Scheduling Methods (Algorithms)
000000 80000000000000000A000000000000

The RIOT Scheduler — Example

T1 - Priority 0

T2 - Priority 4

T3 - Priority 4

T4 - Priority 9

IDLE - Priority 15

P = Pending Time
B = Blocked
S = Sleeping

R = Running

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 19/49

Scheduling Methods (Algorithms)
0000000@000000000000000A000000000000

First Come First Served (FCFS)

m Works according to the principle First In First Out (FIFO)
m Running processes are not interrupted

m It is non-preemptive scheduling
m FCFS is fair

m All processes are executed

m The average waiting time may be very high under certain
circumstances

m Processes with short execution time may need to wait for a long time if
processes with long execution times have arrived before

m FCFS/FIFO can be used for = batch processing

m FIFO is used in Linux for non-preemptive real-time processes

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 20/49

Scheduling Methods (Algorithms)
00000000@00000000000000A000000000000

First Come First Served — Example

m Four processes shall | Process | CPU time | Creation time
be processed on a A 8 ms 0 ms
system with a single B 4 ms 1ms
CPU C 7 ms 3 ms

m Execution order of D 13 ms 5 ms

the processes as

Gantt chart N B S O

| I I | | | ’
0 10 15 20 25 30 [ms]

(6, =

m Runtime of the processes m Waiting time of the processes
’Process‘A‘B‘C‘D‘ ’Process ‘A‘B‘C‘D‘

Runtime | 8 | 11 | 16 | 27 |"® [Wating time | 0 | 7 | 9 | 14 |

0+7+49+14 __ 7.5 ms
2 =1.

runtime = W —15.5 ms Avg. waiting time =

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 21/49

Scheduling Methods (Algorithms)
00000000080000000000000A000000000000

Last Come First Served (LCFS)

m Works according to the principle Last In First Out (LIFO)
m Processes are executed in the reverse order of creation

m The concept is equal with a stack
m Running processes are not interrupted

m The processes have the CPU assigned until process termination or
voluntary resigning

m LCFS is not fair

m The case of continuous creation of new processes, the old processes are
not taken into account and thus may starve

m FCFS/FIFO can be used for = batch processing
m Is seldom used in pure form

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 22/49

Scheduling Methods (Algorithms)
00000000008000000000000A000000000000

Last Come First Served — Example

m Four processes shall] Process \ CPU time \ Creation time
be processed on a A 8 ms 0 ms
system with a single B 4 ms 1 ms
CPU C 7 ms 3 ms

D 13 ms 5 ms

m Execution order of the processes as Gantt chart

| B |
| | | | | | | ”
0 5 10 15 20 25 30 [ms]

m Runtime of the processes m Waiting time of the processes
]Process\A\B\C\D‘]Process \A\B\C\D‘
| Runtime | 8 [31[25[16 | | Waiting time | 0 [27 [18 | 3 |

8+31J225+16 — 20 ms 0+27Xl8+3 — 12 ms

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 23/49

Scheduling Methods (Algorithms)
00000000000800000000000A000000000000

Last Come First Served — Preemptive Variant (LCFS-PR)

m A new process in state ready replaces the currently executed processes
from the CPU
m Processes, which get the CPU resigned, are inserted at the end of the
queue
m If no new processes are created, the running process has the CPU
assigned until process termination or voluntary resigning

m Prefers processes with a short execution time
m The execution of a process with a short execution time may be
completed before new process are created
m Processes with a long execution time may get the CPU resigned several
times and thus significantly delayed
m LCFS-PR is not fair

m Processes with a long execution time may never get the CPU assigned
and starve

m Is seldom used in pure form

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 24 /49

Scheduling Methods (Algorithms)
00000000000080000000000A000000000000

Last Come First Served Example — Preemptive Variant

m Four processes shall] Process \ CPU time \ Creation time ‘
be processed on a A 8 ms 0 ms
system with a single B 4 ms 1 ms
CPU C 7 ms 3 ms

D 13 ms 5 ms

m Execution order of the processes as Gantt chart

A B Bl A |
| | | | | | | ”
0 5 10 15 20 25 30 [ms]

m Runtime of the processes m Waiting time of the processes

]Process\A\B\C\D‘]Process \A\B\C\D‘

| Runtime | 32[24[20 [13| | Waiting time | 24 [20 | 13] 0 |
32+24I20+13 — 2295 ms 24+202~13+0 = 14.25 ms

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 25/49

Scheduling Methods (Algorithms)
00000000000008000000000A000000000000

Round Robin — RR (1/2)

m Time slices with a fixed duration (may be ool)
are specified

m The processes are queued in a cyclic queue
according to the FIFO principle

m The first process of the queue gets the CPU
assigned for the duration of a time slice

m After the expiration of the time slice, the
process gets the CPU resigned and it is
positioned at the end of the queue

m Whenever a process is completed successfully,
it is removed from the queue

Process A

Process F Process B

Process E Process C

Process D

B New processes are inserted at the end of the
queue

m The CPU time is distributed fair among the processes
m RR with time slice size oo behaves like —> FCFS

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 26/49

Scheduling Methods (Algorithms)
00000000000000®00000000A000000000000

Round Robin — RR (2/2)

m The longer the execution time of a process is, the more rounds are
required for its complete execution
m The size of the time slices influences the performance of the system

m The shorter they are, the more process switches must take place
= Increased overhead

m The longer they are, the more gets the simultaneousness lost
= The system hangs/becomes jerky

m The size of the time slices is usually in single or double-digit millisecond
range

Prefers processes with short execution time
Preemptive scheduling method

Round Robin scheduling can be used for interactive systems

Round Robin is used in Linux for preemptive real-time processes

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 27/49

Round Robin — Example

Scheduling Methods (Algorithms)
00000000000000080000000A000000000000

m Four processes shall be
processed on a system with a
single CPU

m All processes are at time
point O in state ready

m Time quantum g =1 ms

m Execution order of the
processes as Gantt chart

m Runtime of the processes

’ Process \ CPU time

A 8 ms
B 4 ms
C 7 ms
D 13 ms

0 5 10 15 20 25 30 [ms]

m Waiting time of the processes

]Process\A\B\C\D\

]Process \A\B\C\D\

| Runtime | 26 | 14 | 24 [32 |

a

Waiting time | 18 | 10 | 17 [19 |

runtime = M‘M =24 ms

Avg. waiting time = w =16 ms

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 28/49

Scheduling Methods (Algorithms)
00000000000000008000000A000000000000

Shortest Job First (SJF) / Shortest Process Next (SPN)

The process with the shortest execution time get the CPU assigned first
Non-preemptive scheduling method
Problem: The runtime of each process needs to be known in advance
Solution: Execution time is estimated by analyzing its behavior in the
past
m SJF is not fair

m Prefers processes, which have a short execution time

m Processes with a long execution time may get the CPU assigned only

after a very long waiting period or starve

m If the execution time of the processes can be estimated, SJF can be
used for batch processing)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 29/49

Scheduling Methods (Algorithms)
00000000000000000800000A000000000000

Shortest Job First — Example

m Four processes shall be processed ’ Process ‘ CPU time ‘
on a system with a single CPU A 8 ms
m All processes are at time point 0 B 4 ms
in state ready C 7 ms
D 13 ms

m Execution order of the processes as Gantt chart

| B | R
| | | | | | | ”
0 5 10 15 20 25 30 [ms]

m Runtime of the processes m Waiting time of the processes
]Process\A\B\C\D‘]Process \A\B\C\D‘
| Runtime | 10 [4 [11 [32| [Waitingtime [11 [0 | 4 [19 |

19+4+411+32 —16.5 ms 11+0£4+19 — 8.5 ms

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 30/49

Scheduling Methods (Algorithms)
00000000000000000080000A000000000000

Shortest Remaining Time First (SRTF)

m Preemptive SJF is called Shortest Remaining Time First (SRTF)
m If a new process is created, the remaining execution time of the running
process is compared with each process in state ready in the queue

m If the currently running process has the shortest remaining execution
time, the CPU remains assigned to this process

m If one or more processes in state ready have a shorter remaining
execution time, the process with the shortest remaining execution time
gets the CPU assigned

m Estimation of runtime is required

m As long as no new process is created, no running process gets
interrupted
m The processes in state ready are compared with the running process
only when a new process is created!

m Processes with a long execution time may starve (= not fair)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 31/49

Scheduling Methods (Algorithms)
00000000000000000008000A000000000000

Shortest Remaining Time First — Example

m Four processes shall] Process \ CPU time \ Creation time
be processed on a A 8 ms 0 ms
system with a single B 4 ms 3 ms
CPU C 7 ms 16 ms

D 13 ms 11 ms

m Execution order of the processes as Gantt chart

[ATe T A T € T]
| I T

>
>

0 5 10 15 20 25 3|0 [ms]

m Runtime of the processes m Waiting time of the processes
]Process\A\B\C\D‘]Process \A\B\C\D‘
| Runtime [12 [4 [7 | 21 | | Waiting time [4 | 0 [0 [8 |

12+4I7+21 — 11 ms 4+01r0+8 =3 ms

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 32/49

Scheduling Methods (Algorithms)
00000000000000000000800A000000000000

Longest Job First (LJF)

m The process with the longest execution time get the CPU assigned first
m Non-preemptive scheduling method

m Estimation of runtime is required

m LJF is not fair

m Prefers processes, which have a long execution time
m Processes with a short execution time may get the CPU assigned only
after a very long waiting period or starve

m If the execution time of the processes can be estimated, LJF can be
used for batch processing)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 33/49

Scheduling Methods (Algorithms)
000000000000000000000 8000000000000

Longest Job First — Example

m Four processes shall be processed ’ Process ‘ CPU time
on a system with a single CPU A 8 ms
m All processes are at time point 0 B 4 ms
in state ready C 7 ms
D 13 ms

m Execution order of the processes as Gantt chart

| A [C |B]

A
| | | 1 | | | ”

0 5 10 15 20 25 30 [ms]
m Runtime of the processes m Waiting time of the processes
’Process‘A‘B‘C‘D‘ ’Process ‘A‘B‘C‘D‘
| Runtime [21 [32| 28 [13| | Waiting time [13 [28 [21 | 0 |
21+32228+13 — 9235 ms 13+28;21+0 — 155 ms

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 34/49

Scheduling Methods (Algorithms)
0000000000000000000000eA000000000000

Longest Remaining Time First (LRTF)

m Preemptive LJF is called Longest Remaining Time First (LRTF)
m If a new process is created, the remaining execution time of the running
process is compared with each process in state ready in the queue

m If the currently running process has the longest remaining execution
time, the CPU remains assigned to this process

m If one or more processes in state ready have a longer remaining
execution time, the process with the longest remaining execution time
gets the CPU assigned

m Estimation of runtime is required

m As long as no new process is created, no running process gets
interrupted
m The processes in state ready are compared with the running process
only when a new process is created!

m Processes with a short duration may starve (= not fair)

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 35/49

Scheduling Methods (Algorithms)
00000000000000000000000e000000000000

Longest Remaining Time First — Example

m Four processes shall] Process \ CPU time \ Creation time
be processed on a A 8 ms 0 ms
system with a single B 4 ms 6 ms
CPU C 7 ms 21 ms

D 13 ms 11 ms

m Execution order of the processes as Gantt chart

| A [B A AN
0 5 10 15 20 25 30 [ms]

m Runtime of the processes m Waiting time of the processes
’Process‘A‘B‘C‘D‘ ’Process ‘A‘B‘C‘D‘
| Runtime [32 [4 [7]20 | | Waiting time [24 [0 | 0 [7 |

32HAATE0 — 15,75 ms 2H0L0E — 7.75 ms

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 36/49

Scheduling Methods (Algorithms)
00000000000000000000000 800000000000

Highest Response Ratio Next (HRRN)

m Fair variant of SJF/SRTF/LJF/LRTF

m Takes the age of the process into account in order to avoid starvation

m The response ratio is calculated for each process

Estimated execution time + Waiting time

Response ratio = - - -
Estimated execution time

m Response ratio value of a process after creation: 1.0
m The value rises fast for short processes
m Objective: Response ratio should be as small as possible for each
process
m Then the scheduling operates efficiently
m After termination of a process or if a process becomes blocked, the
CPU is assigned to the process with the highest response ratio

m Just as with SJF/SRTF/LJF/LRTF, the execution times of the
processes must be estimated via by statistical recordings

m It is impossible that processes starve —> HRRN is fair
S Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 /1o

Scheduling Methods (Algorithms)
00000000000000000000000080000000000

Earliest Deadline First (EDF)

m Used in real-time operating operating systems (RTOS)
m Objective: processes should comply with their deadlines when possible
m Processes in ready state are arranged according to their deadline
m The process with the closest deadline gets the CPU assigned next
m The queue is reviewed and reorganized whenever. ..

m a new process switches into state ready
® or an active process terminates

m Can be implemented as preemptive and non-preemptive scheduling

m Preemptive EDF can be used in real-time operating systems
m Non-preemptive EDF can be used for batch processing

m EDF is used in Linux for preemptive real-time processes

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 38/49

Scheduling Methods (Algorithms)
00000000000000000000000AO00e000000000

Earliest Deadline First — Example

m Four processes shall be] Process \ CPU time \ Deadline ‘
processed on a system with a A 8 ms o5
single CPU B 4 ms 18

m All processes are at time C 7 ms 9
point 0 in state ready D 13 ms 34

m Execution order of the

processes as Gantt chart ; | B[N S

| I I | I I o
5 10 15 20 25 30 [ms]

m Runtime of the processes m Waiting time of the processes
’Process‘A‘B‘C‘D‘ ’Process ‘A‘B‘C‘D‘

(Runtime | 19 [11] 7 [32] ® [Waiting time | 11 | 7 | 0 | 10 |

114710119 _
7 =9.25 ms

runtime = w —17.25 ms Avg. waiting time =

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 39/49

Scheduling Methods (Algorithms)
00000000000000000000000AO000800000000

Multilevel Scheduling

m With each scheduling policy, compromises concerning the different
scheduling criteria must be made

m Procedure in practice: Several scheduling strategies are combined
= Static or dynamic multilevel scheduling

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 40/49

Scheduling Methods (Algorithms)
00000000000000000000000A000080000000

Static Multilevel Scheduling

m The list of processes of ready state is split into multiple sublists
m For each sublist, a different scheduling method may be used

m The sublists have different
priorities or time multiplexes
(eg, 80%20% Or | Process class 1 |(—)| Process Y |(—)| Process Z |(---) P
60%:30%:10%) >
m Makes it possible to separate
. .. Process class 3 |(—)| Process S |(—)| Process T [LY S
time-critical from l x - <

. . \4
non-time-critical processes :

m Example of allocating the processes to different process classes
(sublists) with different scheduling strategies:

Priority Process class Scheduling method
3 Real-time processes (time-critical) Priority-driven scheduling
2 Interactive processes Round Robin
1 Compute-intensive batch processes First Come First Served

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 41/49

Scheduling Methods (Algorithms)
00000000000000000000000A00000e000000

Static Multilevel Scheduling (2/2)

m Example of allocating the processes to different process classes
(sublists) with different scheduling strategies:

Priority Process class Scheduling method
3 Real-time processes (time-critical) ~ Priority-driven scheduling
3 Interactive processes Round Robin
2 I/O-intensive processes Round Robin
1 Compute-intensive batch processes First Come First Served

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 42/49

Scheduling Methods (Algorithms)
00000000000000000000000A000000800000

Multilevel Feedback Scheduling (1/2)

m |t is impossible to predict the execution time precisely in advance

m Solution: Processes, which utilized much execution time in the past,
get sanctioned

m Multilevel feedback scheduling works with multiple queues
m Each queue has a different priority or time multiplex
(e.g., 70%:15%:10%:5%)
m Each new process is added to the top queue
m This way it has the highest priority
m Each queue uses Round Robin

m If a process returns the CPU on voluntary basis, it is added to the same
queue again

m If a process utilized its entire time slice, it is inserted in the next lower
queue, with has a lower priority

m The priorities are therefore dynamically assigned with this method

m Multilevel feedback scheduling is preemptive scheduling

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 43/49

Scheduling Methods (Algorithms)
00000000000000000000000A000000080000

Multilevel Feedback Scheduling (2/2)

Queue 0

m Benefit:
m No complicated
estimations!

m New processes are
quickly assigned to a
priority category

Queue n

older (longer-running) T T[] cPy
,—>

m Prefers new processes over

processes

m Processes with many /O operations are preferred because they
typically yield when waiting for 1/0

m Older, longer-running processes are delayed

Source: William Stallings. Operating Systems. 4th edition. Prentice Hall (2001). P.413)

Many modern operating systems use variants of multilevel feedback scheduling for the scheduling of the processes.
Examples: Linux for ,,normal” processes (until Kernel 2.4), Mac OS X, FreeBSD, NetBSD and the Windows NT faminJ

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 44/49

Scheduling Methods (Algorithms)
00000000000000000000000A00000000e000

Completely Fair Scheduler (Linux since 2.6.23) — Part 1/3

m The kernel implements a
CFS scheduler for every
CPU core and maintains a
variable vruntime (virtual
runtime) for every
SCHED_QOTHER process

m The value represents a
virtual processor runtime

NIL

NIL NIL NIL NIL
in nanoseconds

vruntime

Most need of CPU time Least need of CPU time

m vruntime indicates how long the particular process has already used the
CPU core

m The process with the lowest vruntime gets access to the CPU core next

m The management of the processes is done using a red-black tree
(self-balancing binary search tree)

m The processes are sorted in the tree by their vruntime values

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 45/49

Scheduling Methods (Algorithms)

000000000000 00O0O0O0O00O000O00O000O00000e00

Completely Fair Scheduler (Linux since 2.6.23) — Part 2/3

m Goal: All processes should
get a similar (fair) share of
computing time of the CPU
core they are assigned to
= For n processes, each

process should get 1/n of ﬁ () ()

the CPU time

vruntime

Most need of CPU time Least need of CPU time
m If a process got the CPU core assigned, it can run until its vruntime
value has reached the targeted portion of 1/n of the available CPU time

m The scheduler aims for an equal vruntime value for all processes

The CFS scheduler only takes care of the scheduling of the ,normal” (non-real-time) processes
that are assigned to the scheduling method SCHED_OTHER J

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 46/49

Scheduling Methods (Algorithms)

000000000000 00O0O0O0O00O00000O000O000000e0

Completely Fair Scheduler (Linux since 2.6.23) — Part 3/3

m If a process gets replaced
from the CPU core, the
vruntime value is increased
by the time the process did
run on the CPU core

m The nodes (processes) i
the tree move contlnuously P
from right to left

— fair distribution of

CPU resources
m The scheduler takes into account the static process priorities (nice

values) of the processes

m The vruntime values are weighted differently depending on the nice
value
m In other words: The virtual clock can run at different speeds

Most need of CPU time Least need of CPU time

vruntime

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 47/49

Scheduling Methods (Algorithms)
00000000000000000000000A00000000000e

Classic and modern Scheduling Methods

Scheduling Fair CPU time Takes priorities

NP P must be known into account
Priority-driven scheduling X X no no yes
First Come First Served = FIFO X yes no no
Last Come First Served X X no no no
Round Robin X yes no no
Shortest/Longest Job First X no yes no
Shortest Remaining Time First X no yes no
Longest Remaining Time First X no yes no
Highest Response Ratio Next X yes yes no
Earliest Deadline First X X yes no no
Static multilevel scheduling X no no yes (static)
Multilevel feedback scheduling X yes no yes (dynamic)
Completely Fair Scheduler X yes no yes

m NP = non-preemptive scheduling, P = preemptive scheduling
m A scheduling method is ,fair’ when each process gets the CPU assigned at some point

m It is impossible to calculate the execution time precisely in advance

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 48/49

Scheduling Methods (Algorithms)
.

You should now be able to answer the following
questions:

m What steps does the dispatcher need to
carry out for switching between processes?

m What is scheduling? ‘ ,
m How do preemptive scheduling and ®
non-preemptive scheduling work? \,

m Explain the functioning of several common
scheduling methods?

m How does scheduling in modern operating
systems works in detail?

Prof. Dr. Oliver Hahm — Operating Systems — Scheduler and Dispatcher — WS 22/23 49/49

	Process Switching
	Scheduling Methods (Algorithms)

