
Distributed Systems

Distributed Systems
Application Architectures

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences

Faculty 2: Computer Science and Engineering

oliver.hahm@fb2.fra-uas.de

https://teaching.dahahm.de

22.06.2023

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 1/55

https://teaching.dahahm.de

Distributed Systems

Development of Commercial IT Solutions

What are the main drivers/­

goals when developing IT solu­

tions in a commercial c
ontext?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 2/55

Distributed Systems

Main Driver of Commercial IT Products

High flexibility (→ Ability to adapt)

Flexible modelling of today’s and prospective business processes
Reduction of development time (time-to-market)
Integration of existing (partial) solutions
Interoperability with third-party components
Considering current technological trends:

Internet of Things
Cloud Computing
Big Data

Low costs

Reduction of development costs
Reduction of operation, maintenance, and management costs

→ Total cost of ownership

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 3/55

Distributed Systems

Development of Commercial IT Solutions

How can we get there?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 4/55

Distributed Systems

Approaches

Open systems (vendor independence)

Standard solutions (instead of proprietary development)

Client/Server models and distributed computing

Middleware

Web services

Application server

Software reuse and componentware

Reuse of services/Service Oriented Architectures (SOA)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 5/55

Distributed Systems

Which standards/
protocol may

help here?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 6/55

Distributed Systems

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 7/55

Distributed Systems

Fundamental theorem of software engineering

What is a general approach

in computer science to tackle

complex problems?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 8/55

Distributed Systems

Fundamental theorem of software engineering

Source: Geek & Poke, Oliver Widder

Theorem

“We can solve any problem by introducing an

extra level of indirection.”

David J. Wheeler

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 8/55

Distributed Systems

Fundamental theorem of software engineering

Source: Geek & Poke, Oliver Widder

Theorem

“We can solve any problem by introducing an

extra level of indirection.”

David J. Wheeler

. . . except for the problem of too many

levels of indirection.

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 8/55

Distributed Systems

Middleware based Architectures

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 9/55

Distributed Systems

Middleware based Architectures

What is the role of

Middleware?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 10/55

Distributed Systems

Middleware based Architectures

Tasks of the Middleware

Software layer as distribution platform for the integration of program
components

KuKr Ks Kt
Application

Components

(Distribution infrastructure)

Middleware layer

LOS /

NOS

Computer

LOS /

NOS

Computer
......

Network

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 11/55

Distributed Systems

Middleware based Architectures

Middleware Architectures

Each middleware can be characterized by a certain architecture paradigm
along with its structural and activity model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 12/55

Distributed Systems

Middleware based Architectures

Middleware Architectures

Each middleware can be characterized by a certain architecture paradigm
along with its structural and activity model

Structural model defines . . .

the distributable units (program components)
their naming and addressing
potential auxiliary components

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 12/55

Distributed Systems

Middleware based Architectures

Middleware Architectures

Each middleware can be characterized by a certain architecture paradigm
along with its structural and activity model

Structural model defines . . .

the distributable units (program components)
their naming and addressing
potential auxiliary components

Activity model defines the dynamics and as such the . . .

the stakeholders
interaction pattern
communicated units
synchronization

Implementing a middleware requires access to the components of the
underlying layers (esp. the OS)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 12/55

Distributed Systems

Middleware based Architectures

Middleware Properties

Degree of specialization can be differ a lot, e.g., . . .

support of a generic cooperation approach
(→ main focus of our course)
database centric
(SQL middleware, transaction processing monitor)
document or workflow oriented

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 13/55

Distributed Systems

Middleware based Architectures

Middleware Properties

Degree of specialization can be differ a lot, e.g., . . .

support of a generic cooperation approach
(→ main focus of our course)
database centric
(SQL middleware, transaction processing monitor)
document or workflow oriented

Dependence on programming languages

Sometimes very high (e.g., only usable with Java)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 13/55

Distributed Systems

Middleware based Architectures

Middleware Properties

Degree of specialization can be differ a lot, e.g., . . .

support of a generic cooperation approach
(→ main focus of our course)
database centric
(SQL middleware, transaction processing monitor)
document or workflow oriented

Dependence on programming languages

Sometimes very high (e.g., only usable with Java)

Dependence on the underlying OS

Often less strong

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 13/55

Distributed Systems

Middleware based Architectures

Middleware Properties

Degree of specialization can be differ a lot, e.g., . . .

support of a generic cooperation approach
(→ main focus of our course)
database centric
(SQL middleware, transaction processing monitor)
document or workflow oriented

Dependence on programming languages

Sometimes very high (e.g., only usable with Java)

Dependence on the underlying OS

Often less strong

Dependence on the underlying hardware

Typically very low

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 13/55

Distributed Systems

Middleware based Architectures

Evolution

Message orientation

Service orientation

Object orientation

Component orientation

Service Oriented Architecture (document orientation)

→ Surveyed in the following

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 14/55

Distributed Systems

Middleware based Architectures

Message orientation

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 15/55

Distributed Systems

Middleware based Architectures

Message orientation

Paradigm: Message orientation

Basic model of communicating processes (→ IPC) of traditional OS
adapted to a distributed system environment

Processes as distributable units
Messages as communicated units

Message-oriented Middleware (MOM)

Typically support for persistence and transactions
Examples:

IBM Websphere MQ
Java Messaging Service (JMS) (Teil von J2EE)
RabbitMQ

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 16/55

Distributed Systems

Middleware based Architectures

Message orientation

What could you use to realize a

MOM?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 17/55

Distributed Systems

Middleware based Architectures

Message orientation

Example: Socket Programming

Berkeley Sockets (UNIX)

Winsock (MS Windows sockets API)

Library that basically adopts the UNIX/BSD functions

Sockets are today the de-facto standard, sometimes via decorated by
libraries or classes

Java Sockets (java.net)
correspond mostly the model of Berkeley sockets

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 18/55

Distributed Systems

Middleware based Architectures

Service Orientation

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 19/55

Distributed Systems

Middleware based Architectures

Service Orientation

Services

What is a Service?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 20/55

Distributed Systems

Middleware based Architectures

Service Orientation

Services

What is a Service?

How can you provide services in

a distrib
uted system?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 20/55

Distributed Systems

Middleware based Architectures

Service Orientation

Paradigm: Service Orientation

Foundation: Remote Procedure Call (RPC)

Services as distributable units

Service: set of provided operations/functions

Use of remote services via procedure calls

Typically synchronous processing

Communicated units are requests and responses (containing typed
parameters etc. using a common network representation)

Foundation for client-server applications

Binding of client and server rather static

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 21/55

Distributed Systems

Middleware based Architectures

Service Orientation

Common RPC Platforms

SunRPC

public domain, available for many systems

Importance is decreasing

But the still widely used network file system (NFS) is based on SunRPC

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 22/55

Distributed Systems

Middleware based Architectures

Service Orientation

Common RPC Platforms

SunRPC

public domain, available for many systems

Importance is decreasing

But the still widely used network file system (NFS) is based on SunRPC

OSF DCE RPC, Microsoft RPC

DCE (Distributed Computing Environment):
first feature rich service environment

Too complex for use

Microsoft RPC mostly compatible with DCE RPC

Today hardly used any more

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 22/55

Distributed Systems

Middleware based Architectures

Service Orientation

Common RPC Platforms

SunRPC

public domain, available for many systems

Importance is decreasing

But the still widely used network file system (NFS) is based on SunRPC

OSF DCE RPC, Microsoft RPC

DCE (Distributed Computing Environment):
first feature rich service environment

Too complex for use

Microsoft RPC mostly compatible with DCE RPC

Today hardly used any more

Apache Thrift

Very flexible RPC system

Support for all relevant programming languages

Widely used
Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 22/55

Distributed Systems

Middleware based Architectures

Object Orientation

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 23/55

Distributed Systems

Middleware based Architectures

Object Orientation

Paradigm: Object Orientation

Objects (in the meaning of OOP) as distributable units

Application := distributed object network

Interaction by method invocation (with location and access
transparency), based on a RPC mechanism

Reuse of classes on the source code level

Most relevant platforms

OMG CORBA
Microsoft DCOM
Java RMI

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 24/55

Distributed Systems

Middleware based Architectures

Object Orientation

Example: RMI

Java Remote Method Invocation (RMI) (Sun/Oracle)

Rather young platform
Simple use
Supports only the homogeneous world of distributed Java objects

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 25/55

Distributed Systems

Middleware based Architectures

Object Orientation

Example: Microsoft DCOM

Microsoft DCOM

Extension of COM/OLE via Microsoft RPC
Mostly proprietary platform
Handed over to Open Group in 1999
Subsequently Microsoft services were based on .NET
Decreasing importance, but still used in automation

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 26/55

Distributed Systems

Middleware based Architectures

Object Orientation

Example: OMG CORBA

Object Management Group (OMG)

international non-profit organisation of manufacturers, software
components, and users
Founded in 1989

3Com, American Airlines, Canon, Data General, HP, Philips, Sun,
Unisys, ...

1.000+ members (companies, organizations, universities . . .)
Rather fast moving standard body
Open, formal standardization process based on Request for Proposals
(RFPs)
Goal: definition of interfaces, not product development
http://www.omg.org: freely available documents
Still relevant wrt. . . .

UML standardization
Model Driven Architecture (MDA)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 27/55

http://www.omg.org

Distributed Systems

Middleware based Architectures

Object Orientation

CORBA (Common Object Request Broker Architecture)

Independent from architecture, OS, or programming language

CORBA IDL is the interface description language (resembling C++
syntax)

Interoperable Object Reference (IOR) as system wide object reference

General/Internet Inter-ORB Protocol (GIOP/IIOP) as message protocol

Many object oriented services and implementations available

Hardly used for new business applications, but still maintained

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 28/55

Distributed Systems

Middleware based Architectures

Component Orientation

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 29/55

Distributed Systems

Middleware based Architectures

Component Orientation

Paradigm: Component Orientation

Components as distributable units

Strong independence and interchangeability of the components

Interaction via method calls (based on RPC)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 30/55

Distributed Systems

Middleware based Architectures

Component Orientation

Paradigm: Component Orientation

Components as distributable units

Strong independence and interchangeability of the components

Interaction via method calls (based on RPC)

Overcoming limitations of object oriented middleware:

Implicit dependencies
Leaking low-level details → lack of transparency
Missing support for deployment

Interfaces are specified in terms of contracts

Provided interfaces
Required interfaces

Rather heavyweight

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 30/55

Distributed Systems

Middleware based Architectures

Component Orientation

Jakarta Enterprise Beans

Jakarta Enterprise Beans (EJB) (formerly Enterprise JavaBeans) is the
most commonly used component model along with Microsoft .NET

Part of the specification of Java interfaces for server-side components
(J2EE/JEE)

Tightly coupled with CORBA

Goal: Simplified application development

Application server as integrated infrastructure for transaction
oriented business applications

Interfaces to standardized services (persistence, transaction
management, directory serivces, messaging), bound at deployment
time

High scalability for server side web applications

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 31/55

Distributed Systems

Middleware based Architectures

Component Orientation

Enterprise Java Beans - Component Model

http://www.rizzimichele.it/enterprise-java-beans-and-all-j2ee/

Components

Stateless and stateful session beans (Execution of a task for a client
without resp. with memory for this client)
Entity Beans (Representation of business objects in persistent memory,
support for transactions)
Message-driven Beans (asynch. processing of messages, JMS-API)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 32/55

Distributed Systems

Middleware based Architectures

Service Oriented Architecture

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 33/55

Distributed Systems

Middleware based Architectures

Service Oriented Architecture

Paradigm: Service Oriented Architecture (SOA)

Architectural approach for business applications

For structuring and the use of distributed services under potentially
differing governance

Goal: achieve technical structuring of application sets

Expected benefits:

Definition of services by the means of the business process
At the same time multiple use of services in different applications

⇒ Maintenance reduction
Central integration of various applications instead of pairwise interfaces

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 34/55

Distributed Systems

Middleware based Architectures

Service Oriented Architecture

SOA: Services - Applications

Ideal image:

Enterprise Service Bus

Application 1

Service A Service B Service C Service D Service E

Application 2 Application 3 Application 4

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 35/55

Distributed Systems

Middleware based Architectures

Service Oriented Architecture

SOA: Services - Applications

Ideal image:

Enterprise Service Bus

Application 1

Service A Service B Service C Service D Service E

Application 2 Application 3 Application 4

Challenges:

Complete decomposition of existing applications is difficult, costly, and
not visible for the user
Changes to central services affect many applications
Formalizing business processes via services is difficult for departments

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 35/55

Distributed Systems

Middleware based Architectures

Service Oriented Architecture

SOA: Technical View

Autonomous services described with formal interfaces (service
contracts) in XML schema documents

Services do not hold any state whenever possible

XML documents as communicated units (messages)

Service descriptions (meta data) in a directory (service registry)

Services can be identified and accessed via their descriptions
dynamically (→ no linking required)

Programming language or technology is irrelevant

SOA services are currently often implemented as web services

Enterprise Service Bus (ESB) for loose coupling of services

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 36/55

Distributed Systems

Middleware based Architectures

Service Oriented Architecture

WSDL (Web Service Description Language)

Interface/contract description language:

Types
Messages
Interfaces
Services

W3C standard

XML based

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 37/55

Distributed Systems

Middleware based Architectures

Service Oriented Architecture

SOAP

SOAP (formerly Simple Object Access Protocol)

W3C standard
XML document based interaction framework for web services

SOAP Messages (Envelopes with opt. header and body)
Asynchronous processing possible
SOAP request/response messages for RPC style

Protocol binding framework allows for various underlying transport
services, besides HTTP(s), e.g., also SMTP or JMS
Java API for XML Web Services (JAX-WS) is part of Java SE

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 38/55

Distributed Systems

Basic Architecture Models

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 39/55

Distributed Systems

Basic Architecture Models

Example: Web shop

Which
stakeholders are

in­

volved?

Which use cases must be real­

ized?

What are the functional re­

quirements?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 40/55

Distributed Systems

Basic Architecture Models

Basic Architecture Models

Basic architecture models for complex distributed applications

1 Client/Server model

2 Peer-to-peer (P2P) model

3 Multi-Tier model

4 SOA model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 41/55

Distributed Systems

Basic Architecture Models

Client/Server Model

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 42/55

Distributed Systems

Basic Architecture Models

Client/Server Model

Client/Server Model (1)

Two different roles

Server: Service provider, e.g., web server delivers web pages
Client: Service user, customer, consumer, e.g., web browser requesting
web pages

Client and server run typically on different computers

Client

Participant

Server

Request

Response

Participant

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 43/55

Distributed Systems

Basic Architecture Models

Client/Server Model

Client/Server Model (2)

Communication processes are based on request/response interaction
pattern

Initiated by the client

A client can interact with multiple servers over time

A server may process requests for multiple clients

A server may act as a client towards other servers (change of role):

Client

Request

Response

ServerClient
Server/

Request

Response

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 44/55

Distributed Systems

Basic Architecture Models

Client/Server Model

Proxy

Intermediary instance

Acts as a server towards the client

Acts as a client towards the actual servers

Tasks are, e.g., caching, modification of requests . . .

Example: proxy server for web pages

Client Proxy

Server

Server

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 45/55

Distributed Systems

Basic Architecture Models

P2P-Modell

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 46/55

Distributed Systems

Basic Architecture Models

P2P-Modell

Peer-to-Peer Model (P2P)

Decentralized communication between peers

No additional infrastructure (e.g., servers) required

Basis for ad-hoc communication

Can be implemented at the network or application level

Arbitrary message oriented interaction

Examples

File-Sharing, e.g., BitTorrent, Gnutella, eMule
P2P development platforms JXTA, MSP2P

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 47/55

Distributed Systems

Basic Architecture Models

Multi-Tier Model

Agenda

1 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

2 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 48/55

Distributed Systems

Basic Architecture Models

Multi-Tier Model

Example: Web shop

Which basic
functionalities are

required?

How would you realize these

functionalities in a distrib
uted

system?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 49/55

Distributed Systems

Basic Architecture Models

Multi-Tier Model

Multi-Tier Model

Tiers are rather orthogonal wrt (abstraction) layers, typically oriented
to

User interface/presentation
Application control/logic/function
Data storage

No predetermination to used middleware

Very common today

Two-Tier architecture
3-Tier architecture
N-Tier architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 50/55

Distributed Systems

Basic Architecture Models

Multi-Tier Model

Two-Tier Architecture (1)

Contains client tier (tier 1) and server tier (tier 2)
Possible assignments

Traditional
local

application

Remote data
access,

e.g., ODBC

Tier 2Tier 1

Presentation
Control
Data

Presentation
Control Data

Separated
control

(common)

Remote
presentation,
e.g., typical

web application,
"Thin Client"

Tier 2Tier 1

Presentation
Control

Presentation Control
Data

Control
Data

Separated
presentation,
e.g., X server

Presentation
Control
Data

Presentation

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 51/55

Distributed Systems

Basic Architecture Models

Multi-Tier Model

Two-Tier-Architektur (2)

Different perspective

Traditional
local

application

Remote data
access,

e.g., ODBC

Tier 2

Tier 1

Presentation
Control
Data

Presentation
Control

Data

Separated
control

(common)

Remote
presentation,
e.g., typical

web application,
"Thin Client"

Presentation
Control Presentation

Control
Data

Control
Data

Separated
presentation,
e.g., X server

Presentation

Control
Data

Presentation

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 52/55

Distributed Systems

Basic Architecture Models

Multi-Tier Model

3-Tier Architecture

Current structure model for complex applications

Tier 1:
Presentation

Tier 2 (Middle Tier):
Control/Logic/Function

Tier 3:
Data

Presentation

Function

Function

Function

Function

Function

DBMS

Legacy System
(Mainframe)

(Graphical) User
Interface (GUI/UI),
e.g., web browser

Multiple application
services or components
(in the network/on the

server)

Data backend

Extension to N-Tier architecture
Dividing primarily the middle tier

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 53/55

Distributed Systems

Basic Architecture Models

Multi-Tier Model

Example: J2EE Application

Client tier

Internet browser or Java client

Web tier

Web server handling requests
through JSPs and servlets

Business component tier
(EJBs)

Functional units that
implement business rules and
manipulate data

Enterprise information
systems tier

Databases, CRMs,
mainframes, etc.

Source: R. Greespan

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 54/55

Distributed Systems

Summary

Important takeaway messages of this
chapter

Middleware acts as a layer between the
OS and the application in order to
abstract distributed applications from
the underlying layers

Middleware architectures describe the
distributable units and interaction
models

For the design of a distributed system
various architecture models can be
used

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 23 55/55

	Middleware based Architectures
	Basic Architecture Models

