Distributed Systems

Distributed Systems

Basics of Communication

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

20.04.2023

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 1/37

https://teaching.dahahm.de

Distributed Systems

Goals

m Getting accustomed to a generic message-oriented communication
service with a very high practical relevancy — the Internet and the
TCP/IP protocol suite

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 2/37

Distributed Systems

Goals

m Getting accustomed to a generic message-oriented communication
service with a very high practical relevancy — the Internet and the
TCP/IP protocol suite

m Getting to know sockets as a common API for network programming

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 2/37

Distributed Systems

Goals

m Getting accustomed to a generic message-oriented communication
service with a very high practical relevancy — the Internet and the
TCP/IP protocol suite

m Getting to know sockets as a common API for network programming

m Communication services on higher layers (e.g., remote procedure calls
(RPCs), web services) are based on these basic services

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 2/37

Distributed Systems

Goals

m Getting accustomed to a generic message-oriented communication
service with a very high practical relevancy — the Internet and the
TCP/IP protocol suite

m Getting to know sockets as a common API for network programming

m Communication services on higher layers (e.g., remote procedure calls
(RPCs), web services) are based on these basic services

Higher layer communication services and middleware platforms offer a more
abstract interface which is aligned with the corresponding cooperation
paradigm. They are based internally on these fundamental concepts of the
underlying communication system

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 2/37

Distributed Systems

Agenda

Il Basics of Communication
m Number of Communication Peers
m Addressing
m Buffering
m Communication Pattern
m Semantics of Messages
B Server Architecture

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23

Distributed Systems

LBasics of Communication

Agenda

Il Basics of Communication
m Number of Communication Peers
Addressing
Buffering
Communication Pattern

|
|
|
m Semantics of Messages

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23

Distributed Systems

LBasics of Communication

Basics of Communication

m All interaction between any participants requires an underlying
communication capability
m Communication channel
m The facility that allows for the connection/coupling of communication
partners is called communication channel or simply channel

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 5/37

Distributed Systems

LBasics of Communication

Basics of Communication

m All interaction between any participants requires an underlying
communication capability
m Communication channel
m The facility that allows for the connection/coupling of communication
partners is called communication channel or simply channel
m Direction of the message flow of a channel
m A channel is called directed or unidirectional if one process takes
exclusively the sender role and the other process takes exclusively the
receiver role
m Otherwise the channel is called undirected or bidirectional

communication communication
endpoint endpoint
peer —Q—‘ channel |j_©7 peer
-

unidirectional
Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 5/37

Distributed Systems

LBasics of Communication

Aspects of Communication

The number of communication peers
Addressing

Buffering

B Communication pattern

Message structure

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 6/37

Distributed Systems
[

Basics of Communication

L Number of Communication Peers

Agenda

Il Basics of Communication
m Number of Communication Peers

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 7/37

Distributed Systems
LBasics of Communication

L Number of Communication Peers

Number of Peers of a Channel

m Exactly two:
m Most simple (and most common) case
m More than two:

m For certain applications group communication may be appropriate
= — multicast service
m Special case: Broadcast

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 8/37

Distributed Systems
[

Basics of Communication

L Addressing

Agenda

Il Basics of Communication

m Addressing

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 VEY

Distributed Systems
LBasics of Communication
LAddlfessing

Direct Addressing

m Each communication partner have a distinct, unambiguous (potentially
globally unique) address
m Addressing can be explicit and symmetrical
— The sender must explicitly name the receiver — and vice versa

SEND (P, message) - Send a message to process P
RECEIVE (Q, message) - Receive a message from process Q

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 10/37

Distributed Systems
LBasics of Communication
LAddlfessing

Direct Addressing

m Each communication partner have a distinct, unambiguous (potentially
globally unique) address
m Addressing can be explicit and symmetrical
— The sender must explicitly name the receiver — and vice versa

SEND (P, message) - Send a message to process P
RECEIVE (Q, message) - Receive a message from process Q

m Asymmetrical variant (e.g., for server processes):

— Only the sender names the receiver, the receiver (server) gets to know
the identity of the sender only on reception

Example:

SEND (P, message)
RECEIVE (sender_id , message)

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 10/37

Distributed Systems
LBasics of Communication
LAddlfessing

Indirect Addressing

m Communication happens indirectly via intermediary instances
m Advantages:
m Improved modularity
m The number of communication partners can be restructured in a
transparent manner, e.g., after a node failed
m Extend options of group communication, like, for example,
m:1,1:n m:n
m Intermediary instance may ...
m only forward

m store and forward
m transform/translate messages

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 11/37

Distributed Systems
LBasics of Communication
LAddlfessing

Example for Indirect Addressing

SEND (mbox, message) - Send a message to a mailbox mbox.

RECEIVE (mbox, message) - Receive a message from a mailbox mbox.

1 sender
process \
| | | | | | | _ | receiver
/ ~ | process
m sender
process

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 12/37

Distributed Systems
[

Basics of Communication

L Buffering

Agenda

Il Basics of Communication

m Buffering

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 13/37

Distributed Systems
LBasics of Communication
LBuffering

Buffering

m Capacity of a channel:
The number of messages which can be stored temporarily in a channel
to decouple sender and receiver in time

m The channel's capability for buffering messages is typically
implemented by a (waiting) queue

m In distributed systems the waiting queue is typically realized on the
receiver site (rendezvous site)

m Buffering can be used to restore the message order or to modify the
sending order

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 14 /37

Distributed Systems
LBasics of Communication
LBuffering

No Buffering (Capacity Zero)

1693-BET EINEM TELEFONAT

m Unbuffered communication MiT SENER MUTTER.. ..

m Sender and receiver are very closely coupled
in time

(c) fussel 1999

m Also called Rendezvous

m Often considered to be too inflexible B, Bl

Source: https:/ /de.toonpool.com/, Author: Fussel
m Example:
m A sender is blocked when a SEND operation happens before a corresponding
RECEIVE operation
m As soon as the corresponding RECEIVE operation is executed the message is
copied directly without any buffering from the sender process to the receiver
process
m If vice versa a RECEIVE operation happens at first, the receiver is blocked until
the SEND operation is executed

m Example: Communication between threads in various microkernels such
as RIOT or L4

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 15/37

Distributed Systems
LBasics of Communication
LBuffering

Limited Capacity

m A channel can contain at any point of time a maximum of N messages
(waiting queue with capacity /V)
m SEND operation during a non-full waiting queue
m The message is stored in the queue
m The sender process resumes its normal operation
m Waiting queue is full (it contains N sent but not yet received
messages):
m The sender process blocks until free space in the queue is available
again or the message is discarded
m Analogously a receiver is blocked on a RECEIVE operation if the waiting
queue is empty

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 16/37

Distributed Systems
LBasics of Communication
LBuffering

Consequences

m Buffered communication enables loose coupling of the communication
partners in terms of time

m Passing the message to the communication system does not imply that
the receiver has received the message

m Typically the sender won't even know a maximum duration until a
message is received

m If this knowledge is of importance for the sender an explicitly
communication between sender and receiver is required:

Process P (Sender): Process Q (Receiver):
send (Q, message); —> receive (P, message);
receive (Q, reply); <— send (P, "’acknowledgement"’);

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 17/37

Distributed Systems
[

Basics of Communication

L Communication Pattern

Agenda

Il Basics of Communication

m Communication Pattern

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 18/37

Distributed Systems

LBasics of Communication

L Communication Pattern

Communication Pattern
One-Way

m Single message without response or
acknowledgement

Request/Response

m Client role (consumer)

m Server role (producer)

m Often blocking on the client site (—

standard RPC) =)
Participant Participant
Client Server
Request
Photo by Mitchell Luo ‘
Response

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 N VEY

Distributed Systems

LBasics of Communication

L Communication Pattern

Differing Synchronicity for Request/Response:

m Synchronous call: The sender process blocks until the end of the
communication process (— arrival of the response)
= no parallelism

m Asynchronous call: Sender is only delayed for the initiation of the
communication process (— passing the message to the communication
system)

client server client server
send_call ()

send () receive () receive_call()

wait
wait receive_reply ()
process

reply () send_reply ()

response response

(a) synchronous (b) asynchronous

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 PIVEY

Distributed Systems
LBasics of Communication

L Communication Pattern

Publisher/Subscriber Model

m Message classified by topics or event channels

m Receiver subscribe topics (subscriber)

m Sender publishes messages or events (publisher)

m Model allows for transparent sending of messages to multiple receivers!
m Examples: CORBA Notification Service, OMG DDS, MQTT

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 PIVEY

Distributed Systems
LBasics of Communication

L Communication Pattern

More Complex Communication Patterns

= Not very common in simple communication systems

m Exception: Three-way handshake between two participants for reliable
connection establishment

m More complex patterns emerge by group communication
m Very common on the upper layers

m Example: business process

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 22 /37

Distributed Systems
[

Basics of Communication

LSemantics of Messages

Agenda

Il Basics of Communication

m Semantics of Messages

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 PEYEY

Distributed Systems
LBasics of Communication

LSemantics of Messages

Byte stream

m Passed messages of various SEND operations cannot be identified as
individual units any more

= message borders get lost

m The receiver (and the communication system) observe only sequence of
characters (byte stream)

m Example: UNIX pipes

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 24 /37

Distributed Systems
LBasics of Communication

LSemam’,ics of Messages

Message container

m Messages can be identified by sender and receiver

m The messages have either a fixed length or the length can be derived
on both sides

= The message borders remain intact

m The correct interpretation of the internal structure of a message is the
responsibility of the communication peers

m Example: UNIX message queues

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 25 /37

Distributed Systems
LBasics of Communication

LSemam’,ics of Messages

Message Structure

Typed messages
m Messages have a typed structure
m The type is know to the sender and receiver and partly by the
communication system
m The type is used as part of the operations
m Exemplary structure of a message:

Receiver
Sender
Header Type
Size
Data
Payload Representation of the
type

m Message body may contain typed objects (— object-orientation)
Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 26/37

Distributed Systems
LBasics of Communication

LSemam’,ics of Messages

Message Serialization

Example

m Java object serialization transforms an object into a bytestream and
vice versa (deserialization)

m The header contains information about type, layout etc., the body
contains the actual data
m Java class implements the interface java.io.Serializable

m All attributes of the class must be serializable themselves or marked
as transient

m Operations are writeObject (), readObject ()

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23

27 /37

Distributed Systems
LBasics of Communication

LSemantics of Messages

Messages of a Documental Nature

m Example: HTML over HTTP
m XML-Documents

m Very popular today
m Type description via scheme

m Example: SOAP (Simple Object Access Protocol)

1 <soap-env:Envelope
xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"

3 | soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
xmlns:xsi="http://www.w3.o0org/2001/XMLSchema-instance"

5 | xmlns:xsd="http://www.w3.0org/2001/XMLSchema">

<soap-env:Body>

7 <tns:getFlaeche xmlns:tns="urn:tns:beispiel">
<tns:seitel xsi:type="xsd:double">8.0</tns:seitel>
9 <tns:seite2 xsi:type="xsd:double">4.0</tns:seite2>
</tns:getFlaeche>
11 </soap-env:Body>

</soap-env:Envelope>
13

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communicatio

Distributed Systems
[

Server Architecture

Agenda

Bl Server Architecture

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communicatio

Distributed Systems

LServer Architecture

Server Architecture

m Architectural principles for the internal structure of server processes

m Problem: A server typically needs to communicate with multiple clients
at once

Client D

G})

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23

30/37

Distributed Systems
[

Server Architecture

Models

Simple sequential server
Sequential server as state machine
Parallel server processes

Multithreaded server

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 31/37

Distributed Systems
LServer Architecture

Simple Sequential Server

m One process handle the requests of all clients one after another
— Problem if the server acts as a client towards another server while
processing a request: = the whole server gets blocked!

m Drawbacks:
m No concurrency in the server
m No use of (a potentially) underlying multicore architecture by a single
server process
m This approach is hardly acceptable for productive applications in the
traditional Internet, but may be applicable for very constrained devices

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 32/37

Distributed Systems

LServer Architecture

Sequential Server as State Machine

connection server

while (1)

processing
logik

state of
communication

from client i

viviw

Request management

= No internal blocking:

multiple requests can be handled in an overlapping manner
= Multiplexing "'by hand"" = complex to program
m Selection logic in UNIX:

m non-blocking requests (Option 0_NDELAY) and polling
m select()
Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 33/37

Distributed Systems
LServer Architecture

Parallel Server Processes

Architecture:
Connection
1) server
client) child
processes
[TY
L

m Child processes preserve the current state of communication per
remote peer in memory

m Advantage: Multicore architecture can be used

m Problem: Expensive process handling (— context switches)

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23

30/37

Distributed Systems
LServer Architecture

Multithreaded Server

m Automated resolution of the multiplexing problem

m A thread is permanently assigned to each request at the start of
processing
m Each single thread of the server may block at any point of time without
affecting the overall concurrency
— Thread pool is required

m Applicable for all paradigms of distributed applications
m Requires synchronisation!

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 35/37

Distributed Systems
LServer Architecture

Current State of Multithreading

m All modern operating systems and runtime environments support
threading

m Even many embedded operating systems (like RIOT) support
multithreading by now

m Typical APIs

m pthreads POSIX 1003.4 (C/C++)
m Boost threads (C++)
m Java Concurrency since SE 5: java.util.concurrent

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 36/37

Distributed Systems

LSummary

Important takeaway messages of this
chapter

m For all higher layer services in a
distributed system an underlying
communication system is required

m The facility that enables the
communication between the peers is
called channel

m Important characteristics of a
communication system are
B the number of participants
B the addressing style
M its capacity
B the communication pattern
B the semantics of the message

?
™

m Depending on the use case various
architectures to design a server
application are possible

Prof. Dr. Oliver Hahm — Distributed Systems — Basics of Communication — SS 23 37/37

	Basics of Communication
	Server Architecture

