
Prof. Dr. Oliver Hahm
Distributed Systems (SS22)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 2
Deadline: May 31, 2022 – 04:00 am CEST

Exercise 1 (UDP chat server and client)

In this exercise you will develop a chat server and the corresponding client applica-
tion using UDP as transport layer protocol.
Protocol Format

All messages follow the following protocol format:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Version Message Type Message ID
Payload Length

Payload

All protocol fields are sent in network byte order. The Version field of client and
server shall match. If they do not match the receiver may discard the packet and
send a NAK. The Message Type can contain the following values:

• 0x01 – LOGIN

• 0x02 – MESSAGE

• 0x03 – ACK

• 0x04 – NAK

• 0x05 – LOGOUT

The Message ID of a response must be identical to the Message ID of the corre-
sponding request. Requests may pick a random number for the Message ID. The
field Payload Length specifies the entire size of the following Payload. The content
of Payload depends on the used Message Type:

LOGIN and LOGOUT: The payload contains a string to identify the client as
CLIENT_ID.

MESSAGE: The payload may contain up to two strings where the first one contains
the receiver CLIENT_ID and the second optionally contains the message to be
sent.

ACK and NAK: The payload must be empty.

Content: Network programming with sockets Page 1 of 2



Prof. Dr. Oliver Hahm
Distributed Systems (SS22)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Each string is represented by its Length and Content:
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Length

Content

Protocol Flow

Messages of type LOGIN and LOGOUT must not be accepted by a client. Messages
of type ACK and NAK must be discarded if no corresponding request using the same
MESSAGE ID has been sent before. All messages of type LOGIN, LOGOUT, and MESSAGE
must be answered with a message of type ACK or NAK. All erroneous are answered
with a message of type NAK, all valid messages return an ACK message. If a server
receives a message of type MESSAGE which contains two strings, it must store the
content of the messages.

Implementation hint: You can store the messages in a file with the CLIENT_ID
as filename. The function getline() can be used to read from a file line by line.
This function can also be used to read a line from stdin. Alternatively, you can
write messages bytewise into the file using write.

If a server receives a message of type MESSAGE which contains only one string, it
must check whether a message for the requesting client has been stored and send
this message back to the requesting client as message type MESSAGE. Messages may be
delivered in a reversed order. The server must discard all messages of type MESSAGE
if the given CLIENT_ID is not currently logged in (i.e., send a message of type LOGIN
before, after the last LOGOUT message). The server may remove existing messages
for the given CLIENT_ID upon reception of a LOGOUT message. A client must discard
any unsolicited message of type MESSAGE.

1. Implement a server application which is expects the UDP port to listen on as
command line parameter, e.g., ./udpchatserver <PORT>.

2. Implement a client application which expects three command line parameters:
the address of the server, the port of the server, and a command. The command
can be either login, logout, send, or receive.

• If the client application gets called with login or logout it shall request
the CLIENT ID from the user via stdin.

• If the client application gets called with send it shall request the CLIENT
ID from the user via stdin first and the message itself next.

• If the client application gets called with receive it shall send the message
to server immediately.

Content: Network programming with sockets Page 2 of 2


	(UDP chat server and client)

