
Prof. Dr. Oliver Hahm
Distributed Systems (SS22)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise Sheet 1

Exercise 1 (Clone the Repository)

For the exercises of this course we will work with git. The submission for each exercise
sheet must be committed to a git repository and pushed to a remote. In order to do
so, you will first have to fork the course’s main repository from the faculty’s GitLab
instance. The URL for this main repository is:

https://gitlab.informatik.fb2.hs-intern.de/hahm/dissys22.git

On the upper right corner you will find the fork button. Create a fork in your personal
work space. (A fork is your personal copy of the repository on the GitLab server.)

Next you will have to clone your fork to your computer as a local repository. You
can clone your fork from the command line by calling
git clone <repo>
(You find the URL for your fork on the GitLab page by clicking on the Clone button.
Make sure that you are viewing your fork and not the original repository.)
Now click on Project information on the upper left and select Members. Click on
the Invite members button and invite Oliver Hahm in the role maintainer.

Once you have successfully cloned your fork, you can start editing the files in your
workspace. You can check for local modifications in your workspace by calling
git diff

In order to commit local changes to the repository locally, call
git add <filename> and
git commit
and set an appropriate commit message.

In order to push the local repository upstream to your fork, call
git push origin main
ATTENTION: Do not forget this step once your solution is ready for
submission! Otherwise your submission cannot be assessed by the lectur-
er.

Content: Working with git and programming in C Page 1 of 5

https://gitlab.informatik.fb2.hs-intern.de/hahm/dissys22.git

Prof. Dr. Oliver Hahm
Distributed Systems (SS22)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 2 (Work with the Repository)

Open the the file mybcp.c in the editor of your choosing and modify the line
printf (" He l lo world ! \ n ") ;

into
printf (" He l lo d i s t r i b u t e d systems ! \ n ") ;

Save the modifications into the file. Check the local modifications (git status and
git diff) before committing and pushing the changes to the upstream repository
(git add, git commit, and git push).

Content: Working with git and programming in C Page 2 of 5

Prof. Dr. Oliver Hahm
Distributed Systems (SS22)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 3 (Programming C)

We will program in C in the exercises of this course. Even if you have not yet
programmed in C, you will probably understand the basics of C rather quickly. You
can find multiple books and online tutorials about programming in C, for instance,

• J. Gusted, Modern C : https://modernc.gforge.inria.fr/

• J. Wolf, C von A bis Z : http://openbook.rheinwerk-verlag.de/c_von_a_
bis_z/

It is expected that you will use a coding style which makes your code reada-
ble for other persons. This means in particlar that you will use consistent in-
dentations and formatting of your code. It is preferable to put all blocks after
if/else/for/while/... in curly brackets. You can separate lines that are not
coherent in terms of content with blank lines. A useful style guide for readable code
can be found, for instance, here:
https://www.kernel.org/doc/Documentation/process/coding-style.rst

Exercise 4 (Error and return code handling)

Please note that library functions will report the status of the called operation via
their return code. Typically a successful operation will return a zero or a positive
number. Errors are usually reported by returning −1. Further error messages may
be accessed via the system variable errno or by using the perror helper function:
fd = open(" f i l ename " , O_RDONLY) ;
i f (fd == −1) {

perror (" Error on open ") ;
exit (EXIT_FAILURE) ;

}

Error handling and checking the return values is mandatory. You should always
check them.

Content: Working with git and programming in C Page 3 of 5

https://modernc.gforge.inria.fr/
http://openbook.rheinwerk-verlag.de/c_von_a_bis_z/
http://openbook.rheinwerk-verlag.de/c_von_a_bis_z/
https://www.kernel.org/doc/Documentation/process/coding-style.rst

Prof. Dr. Oliver Hahm
Distributed Systems (SS22)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 5 (Unbuffered file I/O)

In this exercise we will practice file handling via UNIX system calls. Note the ne-
cessary header files. System calls are documented via man pages in section 2 (other
library functions can be found in section 3).

int open(const char *name, int oflag); Open a file
int open(const char *name, int oflag, mode_t mode);
int creat(const char *name, mode_t mode); Create a file
int open(name, O_WRONLY|O_CREAT|O_TRUNC, mode)
int close(int fd); Close a file descriptor
ssize_t read(int fd, void *buf, size_t nbytes); Read from a file
ssize_t write(int fd, const void *buf, size_t nbytes); Write into a file
off_t lseek(int fd, off_t offset, int whence); Position in a file

1. Implement a program called mybcp which copies an arbitrary file byte by byte.
The name of the source file and the name of the destination file shall be passed
via the command line, i.e., a call of the program looks like:
mybcp <source> <dest>.
The created destination file shall have only read and write permissions for the
owner (rw- –- –-).

2. Implement a program called mybappend which appends the content of a file
byte by byte to another existing file. The name of the both files shall be passed
via the command line once again.

3. Implement a program called myrevbcp that works similarly to mybcp but copies
the bytes in reversed order (→ use lseek()).
(Hint: You can check your implementation by reversing a file twice and check
whether the final result matches the original file using the tool diff.)

4. Implement a programm called mycp that works similarly to mybcp but allows
for setting the buffer size for the read() and write() system calls via the
command line (→ mycp <source> <dest> <buffersize>).

Hint: You can check the results of your programs via the provided test scripts. The
scripts are named after the respective program, e.g., test_mybcp.sh for mybcp.
The following command let you build and test your program with a single line:
$ make && ./ test_mybcp . sh
cc −std=c11 [. . .] −o mybcp mybcp . c
Copy ' f i l e 1 ' to ' f i l e 2 '
−−−[Program output]−−−−−−−−−−−−−
Copy f i l e bytewise . . .
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
Compare f i l e s i z e s : OK
Compare the content o f the f i l e s : OK
Check f i l e pe rmi s s i ons : OK

Content: Working with git and programming in C Page 4 of 5

Prof. Dr. Oliver Hahm
Distributed Systems (SS22)

Faculty of Computer Science and Engineering
Frankfurt University of Applied Sciences

Exercise 6 (File attributes)

int stat(const char *name, struct stat *buf); Get file attributes
int fstat(int fd, struct stat *buf);
int truncate(const char *name, off_t length); Set the file size
int ftruncate(int fd, off_t length);

1. Implement a program called filelength that prints the size of a file. The
name of the file is passed once again via the command line. Compare the
output of your program with the output of ls -l.

2. Implement a program called grow which sets the size of a file to the given size.
The name of the file and the size to be set are passed via the command line
(→ grow <file> <size>). If the file does not yet exist, it shall be created
with read and write permissions for the owner.

3. Modify the program mycp in a way that the permissions for the original and
the copied files are identical.

4. Modify the program mycp that it will print an error message when the source
file is not a regular file.

Content: Working with git and programming in C Page 5 of 5

	(Clone the Repository)
	(Work with the Repository)
	(Programming C)
	(Error and return code handling)
	(Unbuffered file I/O)
	(File attributes)

