
Distributed Systems
Application Architectures

Prof. Dr. Oliver Hahm
Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 1/66

https://teaching.dahahm.de

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 2/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 3/66

Main Driver of Commercial IT Products

High flexibility (→ Ability to adapt)
Flexible modelling of today’s and prospective business processes
Reduction of development time (time-to-market)
Integration of existing (partial) solutions
Interoperability with third-party components
Considering current technological trends:

Internet of Things
Cloud Computing
Big Data

Low costs
Reduction of development costs
Reduction of operation, maintenance, and management costs
→ Total cost of ownership

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 4/66

Approaches

Open systems (vendor independence)
Standard solutions (instead of proprietary development)
Client/Server models and distributed computing
Middleware
Web services
Application server
Software reuse and componentware
Reuse of services/Service Oriented Architectures (SOA)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 5/66

Which standards/
protocol may

help here?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 6/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 7/66

What is the role of

Middleware?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 8/66

Tasks of the Middleware
Software layer as distribution platform for the integration of program
components

KuKr Ks Kt
Application

Components

(Distribution infrastructure)

Middleware layer

LOS /

NOS

Computer

LOS /

NOS

Computer
......

Network

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 9/66

Middleware Architectures

Each middleware can be characterized by a certain architecture paradigm
along with its structural and activity model

Structural model defines . . .
the distributable units (program components)
their naming and addressing
potential auxiliary components

Activity model defines the dynamics and as such the . . .
the stakeholders
interaction pattern
communicated units
synchronization

Implementing a middleware requires access to the components of the
underlying layers (esp. the OS)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 10/66

Middleware Properties

Degree of specialization can be differ a lot, e.g., . . .
support of a generic cooperation approach
(→ main focus of our course)
database centric
(SQL middleware, transaction processing monitor)
document or workflow oriented

Dependence on programming languages
Sometimes very high (e.g., only usable with Java)

Dependence on the underlying OS
Often less strong

Dependence on the underlying hardware
Typically very low

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 11/66

Evolution

Message orientation
Service orientation
Object orientation
Component orientation
Service Oriented Architecture (document orientation)

→ Surveyed in the following

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 12/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 13/66

Paradigm: Message orientation

Basic model of communicating processes (→ IPC) of traditional OS
adapted to a distributed system environment

Processes as distributable units
Messages as communicated units

Message-oriented Middleware (MOM)
Typically support for persistence and transactions
Examples:

IBM Websphere MQ
Java Messaging Service (JMS) (Teil von J2EE)
RabbitMQ

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 14/66

What could you use to realize a

MOM?

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 15/66

Example: Socket Programming

Berkeley Sockets (UNIX)
Winsock (MS Windows sockets API)

Library that basically adopts the UNIX/BSD functions

Sockets are today the de-facto standard, sometimes via decorated by
libraries or classes
Java Sockets (java.net)
correspond mostly the model of Berkeley sockets

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 16/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 17/66

Paradigm: Service Orientation

Foundation: Remote Procedure Call (RPC)
Services as distributable units
Service: set of provided operations/functions
Use of remote services via procedure calls
Typically synchronous processing
Communicated units are requests and responses (containing typed
parameters etc. using a common network representation)
Foundation for client-server applications
Binding of client and server rather static

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 18/66

Common RPC Platforms
SunRPC

public domain, available for many systems
Importance is decreasing
But the still widely used network file system (NFS) is based on SunRPC

OSF DCE RPC, Microsoft RPC
DCE (Distributed Computing Environment):
first feature rich service environment
Too complex for use
Microsoft RPC mostly compatible with DCE RPC
Today hardly used any more

Apache Thrift
Very flexible RPC system
Support for all relevant programming languages
Widely used

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 19/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 20/66

Paradigm: Object Orientation

Objects (in the meaning of OOP) as distributable units
Application := distributed object network
Interaction by method invocation (with location and access
transparency), based on a RPC mechanism
Reuse of classes on the source code level
Most relevant platforms

OMG CORBA
Microsoft DCOM
Java RMI

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 21/66

Example: RMI

Java Remote Method Invocation (RMI) (Sun/Oracle)
Rather young platform
Simple use
Supports only the homogeneous world of distributed Java objects

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 22/66

Example: Microsoft DCOM

Microsoft DCOM
Extension of COM/OLE via Microsoft RPC
Mostly proprietary platform
Handed over to Open Group in 1999
Subsequently Microsoft services were based on .NET
Decreasing importance, but still used in automation

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 23/66

Example: OMG CORBA

Object Management Group (OMG)
international non-profit organisation of manufacturers, software
components, and users
Founded in 1989

3Com, American Airlines, Canon, Data General, HP, Philips, Sun,
Unisys, ...

1.000+ members (companies, organizations, universities . . .)
Rather fast moving standard body
Open, formal standardization process based on Request for Proposals
(RFPs)
Goal: definition of interfaces, not product development
http://www.omg.org : freely available documents
Still relevant wrt. . . .

UML standardization
Model Driven Architecture (MDA)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 24/66

http://www.omg.org

CORBA (Common Object Request Broker Architecture)

Independent from architecture, OS, or programming language
CORBA IDL is the interface description language (resembling C++
syntax)
Interoperable Object Reference (IOR) as system wide object reference
General/Internet Inter-ORB Protocol (GIOP/IIOP) as message
protocol
Many object oriented services and implementations available
Hardly used for new business applications, but still maintained

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 25/66

Object Management Architecture (OMA)
Reference model for distributed, object oriented applications in
heterogeneous environments

Application

Objects Facilities

Domain Common

Facilities

Services

Object

Object Request Broker

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 26/66

ORB = Object Request Broker

Object bus as the core for the OMA
Communicating calls between objects (independent of site, platform,
and programming language)
Interoperability between different ORBs

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 27/66

OMA Objects

Conceived encapsulated unit on a single system
→ Realized by an implementation in any given programming language
⇒ Does not necessarily correspond to an object on the programming

language level

Has immutable identity
Has a state
Can be localized via ORB
Possesses attributes (which can be accessed from the outside)
Provides operations (methods) which can be accessed via client
requests

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 28/66

OMA Object References
Handle to identify, address, and locate an object
Internal structure is opaque to the client
Refers to a certain object

Relationship

Server

Client

Object

Object

Object

Object

request

response

Caller does not have
to be an object

RMI based protocol
with local proxies

Exceptions on error target object

Multiple objects
live on one server

Servant:
unit (in programming

terminology) implementing
one or multiple objects;

exists in one server
application

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 29/66

Type of Requests

Synchronous
Client blocks until response is received

Deferred synchronous
Client continues processing after sending a request,
asks later for the response (requires special API → Dynamic Invocation
Interface (DII))

Oneway request
Best-effort delivery without a response
May never arrive at the destination

Asynchronous requests
Defined as part of CORBA messaging (as part of CORBA 2.5 (2001))

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 30/66

Application Development

CORBA Interface Definition Language (IDL)
Descriptive language for the definition of object interfaces
(→ no control constructs)
Strongly typed
any type allows for flexibility
ISO 14750
Description is independent from the programming language of the
implementation
Syntactical close to C++

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 31/66

Simple CORBA IDL Example

1 interface balance {
2 exception out_of_tolerance {};
3 readonly attribute long mode;
4 long getweight_in_grams() raises (out_of_tolerance);
5 void set_ref_weight_mode(in long ref_weight);
6 unsigned short get_weight_in_percent();
7 void reset_ref_weight_mode();
8 };

1 interface ext_balance : balance {
2 exception out_of_tolerance {long difference};
3 readonly attribute long mode;
4 long getweight_in_carat() raises (out_of_tolerance);
5 void set_tare_weight_mode(in long tare_weight);
6 void reset_tare_weight_mode();
7 void set_tolerance_weight_mode(in long min, in long max);
8 void reset_tolerance_weight_mode();
9 };

Interface

definition Types,

public attributes

Operations

derived

interface

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 32/66

Simple CORBA IDL Example

1 interface balance {
2 exception out_of_tolerance {};
3 readonly attribute long mode;
4 long getweight_in_grams() raises (out_of_tolerance);
5 void set_ref_weight_mode(in long ref_weight);
6 unsigned short get_weight_in_percent();
7 void reset_ref_weight_mode();
8 };

1 interface ext_balance : balance {
2 exception out_of_tolerance {long difference};
3 readonly attribute long mode;
4 long getweight_in_carat() raises (out_of_tolerance);
5 void set_tare_weight_mode(in long tare_weight);
6 void reset_tare_weight_mode();
7 void set_tolerance_weight_mode(in long min, in long max);
8 void reset_tolerance_weight_mode();
9 };

Interface

definition Types,

public attributes

Operations

derived

interface

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 32/66

Simple CORBA IDL Example

1 interface balance {
2 exception out_of_tolerance {};
3 readonly attribute long mode;
4 long getweight_in_grams() raises (out_of_tolerance);
5 void set_ref_weight_mode(in long ref_weight);
6 unsigned short get_weight_in_percent();
7 void reset_ref_weight_mode();
8 };

1 interface ext_balance : balance {
2 exception out_of_tolerance {long difference};
3 readonly attribute long mode;
4 long getweight_in_carat() raises (out_of_tolerance);
5 void set_tare_weight_mode(in long tare_weight);
6 void reset_tare_weight_mode();
7 void set_tolerance_weight_mode(in long min, in long max);
8 void reset_tolerance_weight_mode();
9 };

Interface

definition Types,

public attributes

Operations

derived

interface

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 32/66

Simple CORBA IDL Example

1 interface balance {
2 exception out_of_tolerance {};
3 readonly attribute long mode;
4 long getweight_in_grams() raises (out_of_tolerance);
5 void set_ref_weight_mode(in long ref_weight);
6 unsigned short get_weight_in_percent();
7 void reset_ref_weight_mode();
8 };

1 interface ext_balance : balance {
2 exception out_of_tolerance {long difference};
3 readonly attribute long mode;
4 long getweight_in_carat() raises (out_of_tolerance);
5 void set_tare_weight_mode(in long tare_weight);
6 void reset_tare_weight_mode();
7 void set_tolerance_weight_mode(in long min, in long max);
8 void reset_tolerance_weight_mode();
9 };

Interface

definition Types,

public attributes

Operations

derived

interface

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 32/66

Simple CORBA IDL Example

1 interface balance {
2 exception out_of_tolerance {};
3 readonly attribute long mode;
4 long getweight_in_grams() raises (out_of_tolerance);
5 void set_ref_weight_mode(in long ref_weight);
6 unsigned short get_weight_in_percent();
7 void reset_ref_weight_mode();
8 };

1 interface ext_balance : balance {
2 exception out_of_tolerance {long difference};
3 readonly attribute long mode;
4 long getweight_in_carat() raises (out_of_tolerance);
5 void set_tare_weight_mode(in long tare_weight);
6 void reset_tare_weight_mode();
7 void set_tolerance_weight_mode(in long min, in long max);
8 void reset_tolerance_weight_mode();
9 };

Interface

definition Types,

public attributes

Operations

derived

interface

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 32/66

Language Mappings

Specification how IDL is mapped to different programming languages
e.g., IDL module for C++ namespace or Java package
IDL interface as C++/Java class
IDL operation as their member methods

Standardized language mappings for
C, C++, Java, Smalltalk, COBOL, Ada, Lisp, PL/1, Python, IDLscript

Other defined language mappings for:
Tcl, Perl, Eiffel, ...

Consequence:
Various parts of a distributed application can be developed in various
languages
e.g., server application in C++, clients in Java

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 33/66

Products

Important commercial ORBs:
BEA M3 (as part of BEA Tuxedo) (BEA bought by Oracle, 2008)
IONA Orbix (IONA bought by Progress, 2008)
ORBexpress RT, Orbriver RT, PrismTech OpenFusion
(for real-time applications)

Important free ORBs:
OOC ORBacus (partly freely available, 2001 bought by IONA)
MICO (Open Source Projekt, origins at the Universität Frankfurt)
JacORB (FU Berlin, today PrismTech OpenFusion)
TAO (WUSTL) (Real-time processing)
ORBit (Middleware for GNOME)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 34/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 35/66

Paradigm: Component Orientation

Components as distributable units
Strong independence and interchangeability of the components
Interaction via method calls (based on RPC)
Enterprise Java Beans (EJB) (today Jakarte Enterprise Beans) is the
most commonly used component model along with Microsoft .NET

Part of the specification of Java interfaces for server-side components
(J2EE/JEE)
Tightly coupled with CORBA
Goal: Simplified application development
Application server as integrated infrastructure for transaction oriented
business applications
Interfaces to standardized services (persistence, transaction
management, directory serivces, messaging), bound at deployment time
High scalability for server side web applications
Rather heavyweight

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 36/66

Enterprise Java Beans

http://www.rizzimichele.it/enterprise-java-beans-and-all-j2ee/

Components
Stateless and stateful session beans (Execution of a task for a client
without resp. with memory for this client)
Entity Beans (Representation of business objects in persistent memory,
support for transactions)
Message-driven Beans (asynch. processing of messages, JMS-API)

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 37/66

Common Products

Free:
JBoss Application Server (today Red Hat)
Geronimo (Apache)
JOnAS (Object Web, Bull)

IBM Websphere
Oracle/BEA Weblogic
SAP NetWeaver
Sun GlassFish

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 38/66

OSGi - Component Model

Formerly Open Services Gateway initiative is an open standards
organization founded in 1999
Commonly used Java-related component model for big distributed
systems and even embedded systems
Components created by the developers are called bundles
Dynamic component management (lifecycle, incl. updates, remote
management)
Supports versioning
Application:

Equinox platform in Eclipse for dynamic plugin management
For internal modularization of many application servers
origins at home automation and still very active in this context (Smart
Home, Residential Gateways, e.g., Telekom Qivicon)
Automotive/Telematics . . .

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 39/66

OSGi - Architecture

https://www.osgi.org/developer/architecture/

Services connect bundles dynamically
Life-Cycle - API for install, start, stop, update, uninstall
Modules layer, defines import/export code
Execution environment - defines classes and methods of the
platform

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 40/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 41/66

Paradigm: Service Oriented Architecture (SOA)

Architectural approach for business applications
For structuring and the use of distributed services under potentially
differing governance
Goal: achieve technical structuring of application sets
Expected benefits:

Definition of services by the means of the business process
At the same time multiple use of services in different applications

⇒ Maintenance reduction
Central integration of various applications instead of pairwise interfaces

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 42/66

SOA: Services - Applications

Ideal image:

Enterprise Service Bus

Application 1

Service A Service B Service C Service D Service E

Application 2 Application 3 Application 4

Challenges:
Complete decomposition of existing applications is difficult, costly, and
not visible for the user
Changes to central services affect many applications
Formalizing business processes via services is difficult for departments

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 43/66

SOA: Technical View

Autonomous services described with formal interfaces (service
contracts) in XML schema documents
Services do not hold any state whenever possible
XML documents as communicated units (messages)
Service descriptions (meta data) in a directory (service registry)
Services can be identified and accessed via their descriptions
dynamically (→ no linking required)
Programming language or technology is irrelevant
SOA services are currently often implemented as web services
Enterprise Service Bus (ESB) for loose coupling of services

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 44/66

WSDL (Web Service Description Language)

Interface/contract description language:
Types
Messages
Interfaces
Services

W3C standard
XML based

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 45/66

SOAP

SOAP (formerly Simple Object Access Protocol)
W3C standard
There are no objects in the meaning of OOP
XML document based interaction framework for web services

SOAP Messages (Envelopes with opt. header and body)
Asynchronous processing possible
SOAP request/response messages for RPC style

Protocol binding framework allows for various underlying transport
services, besides HTTP(s), e.g., also SMTP or JMS
Java API for XML Web Services (JAX-WS) is part of Java SE

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 46/66

SOAP: Example

https://commons.wikimedia.org/wiki/File:SOAP.svg

1 <?xml version="1.0"?>
2 <s:Envelope xmlns:s="http://www.w3.org/2003/05/soap-envelope">
3 <s:Body>
4 <m:TitleInDatabase xmlns:m="http://www.lecture-db.de/soap">
5 DOM, SAX und SOAP
6 </m:TitleInDatabase>
7 </s:Body>
8 </s:Envelope>

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 47/66

Business Processes

Modelling of business processes
A business process can be described as a complex interaction
between services
Also called web service orchestration
Programming in large

Web services as elementary units
WS-BPEL (Business Process Execution Language)

OASIS standard
Program itself is a XML document
Decreasing importance

BPMN (Business Process Model and Notation)
Formerly known as: Business Process Modelling Notation
OMG standard, related to UML activity diagrams
Standardized as ISO/IEC 19510
Designed to improve understanding between technicians and managers

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 48/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 49/66

Basic Architecture Models

Basic architecture models for complex distributed applications
1 Client/Server model
2 Peer-to-peer (P2P) model
3 Multi-Tier model
4 SOA model

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 50/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 51/66

Client/Server Model (1)

Two different roles
Server: Service provider, e.g., web server delivers web pages
Client: Service user, customer, consumer, e.g., web browser requesting
web pages

Client and server run typically on different computers

Client

Participant

Server

Request

Response

Participant

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 52/66

Client/Server Model (2)

Communication processes are based on request/response interaction
pattern
Initiated by the client
A client can interact with multiple servers over time
A server may process requests for multiple clients
A server may act as a client towards other servers (change of role):

Client

Request

Response

ServerClient
Server/

Request

Response

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 53/66

Proxy

Intermediary instance
Acts as a server towards the client
Acts as a client towards the actual servers
Tasks are, e.g., caching, modification of requests . . .
Example: proxy server for web pages

Client Proxy

Server

Server

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 54/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 55/66

Peer-to-Peer Model (P2P)

Decentralized communication between peers
No additional infrastructure (e.g., servers) required
Basis for ad-hoc communication
Can be implemented at the network or application level
Arbitrary message oriented interaction
Examples

File-Sharing, e.g., BitTorrent, Gnutella, eMule
P2P development platforms JXTA, MSP2P

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 56/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 57/66

Multi-Tier Model

Tiers are rather orthogonal wrt (abstraction) layers, typically oriented
to

User interface/presentation
Application control/logic/function
Data storage

No predetermination to used middleware
Very common today

Two-Tier architecture
3-Tier architecture
N-Tier architecture

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 58/66

Two-Tier Architecture (1)
Contains client tier (tier 1) and server tier (tier 2)
Possible assignments

Traditional
local

application

Remote data
access,

e.g., ODBC

Tier 2Tier 1

Presentation
Control
Data

Presentation
Control Data

Separated
control

(common)

Remote
presentation,
e.g., typical

web application,
"Thin Client"

Tier 2Tier 1

Presentation
Control

Presentation Control
Data

Control
Data

Separated
presentation,
e.g., X server

Presentation
Control
Data

Presentation

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 59/66

Two-Tier-Architektur (2)

Different perspective

Traditional
local

application

Remote data
access,

e.g., ODBC

Tier 2

Tier 1

Presentation
Control
Data

Presentation
Control

Data

Separated
control

(common)

Remote
presentation,
e.g., typical

web application,
"Thin Client"

Presentation
Control Presentation

Control
Data

Control
Data

Separated
presentation,
e.g., X server

Presentation

Control
Data

Presentation

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 60/66

3-Tier Architecture
Current structure model for complex applications

Tier 1:
Presentation

Tier 2 (Middle Tier):
Control/Logic/Function

Tier 3:
Data

Presentation

Function

Function

Function

Function

Function

DBMS

Legacy System
(Mainframe)

(Graphical) User
Interface (GUI/UI),
e.g., web browser

Multiple application
services or components
(in the network/on the

server)

Data backend

Extension to N-Tier architecture
Dividing primarily the middle tier

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 61/66

Example: J2EE Application
Client tier

Internet browser or Java client

Web tier

Web server handling requests
through JSPs and servlets

Business component tier
(EJBs)

Functional units that
implement business rules and
manipulate data

Enterprise information
systems tier

Databases, CRMs,
mainframes, etc.

Source: R. Greespan

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 62/66

Agenda

1 Motivation

2 Middleware based Architectures
Message orientation
Service Orientation
Object Orientation
Component Orientation
Service Oriented Architecture

3 Basic Architecture Models
Client/Server Model
P2P-Modell
Multi-Tier Model
SOA-Modell

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 63/66

SOA Model

After Scheer

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 64/66

SOA from a Technical Perspective

Layered System
IT business components are
using resources
Components provide
sub-functionality as service
Complex services can be
combined through individual
basic services
Business processes link services
to applications
(Choreography/Orchestration)

Optional
Enterprise Service Bus for
communication beyond protocol
boundaries

.

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 65/66

Important takeaway messages of this
chapter

Middleware acts as a layer between the
OS and the application in order to
abstract distributed applications from
the underlying layers

Middleware architectures describe the
distributable units and interaction
models

For the design of a distributed system
various architecture models can be
used

Prof. Dr. Oliver Hahm – Distributed Systems – Application Architectures – SS 22 66/66

	Motivation
	Middleware based Architectures
	Message orientation
	Service Orientation
	Object Orientation
	Component Orientation
	Service Oriented Architecture

	Basic Architecture Models
	Client/Server Model
	P2P-Modell
	Multi-Tier Model
	SOA-Modell
	Summary

