
Distributed Systems
Global State and Synchronization

Prof. Dr. Oliver Hahm
Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 1/21

https://teaching.dahahm.de


Agenda

1 Coordination

2 Global State

3 Mutual Exclusion

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 2/21



Agenda

1 Coordination

2 Global State

3 Mutual Exclusion

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 3/21



Coordination in the Distributed System
Problem statement:

Distributed systems consist of objects and dynamic interrelationship
between these objects: processes
Each individual object has a set of attributes and the processes have a
state
Objects an processes are distributed in the system and may be
independent from each other or require some kind of co-ordination.

Coordination and Synchronization

Coordination in the distributed systems allows to make the behavior
of the system predictable and interactions causal by ordering them.
The letter requires the introduction of a ’time line’ in the system,
which is known as clock synchronization among the nodes.

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 4/21



Processes

In computer systems two type of processes exist
stochastic processes1 and
SMART processes

SMART processes can be realized as program having the following
attributes:

S pecific: The process is defined to fulfill exactly the dedicated case.

M easurable: The process provides a well defined impact on it’s objects.

A chievable: The process is able to fulfill it’s goals given the provided resources.

R epeatable: The process can be used/invoked more often.

T erminated: Given the same resources the process produces the same results in a
determined time frame.

↪→ In the literature instead of Repeatable, you will also find Responsible or even Relevant

1see: https://en.wikipedia.org/wiki/Stochastic_process
Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 5/21

https://en.wikipedia.org/wiki/Stochastic_process


Global states in a Distributed System

Hence, in distributed systems consist of distributed processes which require
to be synchronized and coordinated

in case the process is accessing/using shared resources
the process needs interruption during its operation (triggered events).

In distributed systems nodes have individual clocks
→ There is no trivial common understanding what time means and how to

express this

↪→ Without a clock and time synchronization processes in a distributed
systems may behave erratically and coordination becomes difficult or even
infeasible

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 6/21



Agenda

1 Coordination

2 Global State

3 Mutual Exclusion

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 7/21



Happened-Before Relation
Problem statement

Is it possible to maintain a global view on the state of system’s behavior
thus we have consistency what did happened-before?

Thus, if we introduce a cut C (a snapshot), can we guarantee

∀e ∈ C : f → e =⇒ f ∈ C ?

which means: Catching one particular event e, we catch all events
happened-before f 2

2→ is the happened-before operator; → f
Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 8/21



Consistent Cuts

A consistent cut requires a consistent global state of the
distributed system
Ordering all events in a global history (→ ie∀i=1,...,n) can be considered
as run
A consistent run orders (serializes) the events in the global history H;
to be consistent with the happened-before relation (→) on H.

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 9/21



Global States

Within a distributed system a Global State implies the following
consistency conditions:

Assigning a Global State predicate to a distributed system is
equivalent of providing a function, that maps the set of Global States
to {true; false}.
A Global State is stable: Once it has reached condition {true} and it
remains in that state for all states connected to that state.
Safety is an assertion once an undesired state predicate evaluates to
{false} all other states S reachable from the starting state S0 are
false also.
Liveness is an assertion to a desired state predicate to {true} all other
states reachable from So are true as well.

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 10/21



Agenda

1 Coordination

2 Global State

3 Mutual Exclusion

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 11/21



Exclusive Resources for a Process
Problem statement:
For a process it might be necessary to have exclusive access to a resource. How this can
be accomplished in a distributed system?
Examples:

A process P wants to write to a file (storage) and has to make sure no other
process is reading to that file yielding inconsistencies.

A database is required to update a cell in a table (exclusive lock).

A process P wants to remove by means of rm -r d the directory d recursively
while guaranteeing that no other (remote) process Pj accesses any other file in the
underlying directory structure.

We know this problem from the Operating Systems as entering a critical section:

Critical Sections
enter() enter critical section – set up blocking
accessResource() access shared resource in critical section
exit() leave critical sections – free resource

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 12/21



Mutual Exclusion: Requirements
A distributed system has to conform to some essential requirements in order
to provide Mutual Exclusive capabilities:

1 Safety: At most one process p may execute a critical section in a given
time interval δt.

2 Liveness: A process p requests to enter the critical section and
eventually succeeds.

3 Ordering: Request from processes pi to enter the critical section follow
the happened-before relationship.

↪→ A distributed system not conforming to these requirements will
experience deadlocks in process handling and eventually stalling of
execution.

Figure: Deadlock of processes accessing concurrently a critical section [Coulouris]

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 13/21



Mutual Exclusion: Solutions

Some possible architectures have been developed to cope with these
requirements:

1 We provide a central service (coordinator) for resource allocation.
2 Nodes operate entirely decentralized on a peer-to-peer bases; thus

not transitive dependencies exist.
3 Nodes operate entirely independent and distributed, without

considering any topology dependencies; thus the intrinsic architecture
has to guarantee for this.

4 Operations take place in or ordered manner; typically a logical ring;
thus access rights are ordered in time (and by node).

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 14/21



Mutual Exclusion: Caveats

Due to the message (= information) transfer in the distributed system to
synchronize activities, mutual exclusion is not free of costs:

Message transfer consumes bandwidth and require processing for
entry() and exit() operations in addition to operating with the
resource.
Operations at the client side to access the resource are significantly
delayed.
Access rates is limited given he concurrent access by clients entering
the critical section.
Throughput is limited by synchronization delay between two processes
exiting an entering the critical section.

↪→ A good system design require as little mutual exclusions as possible

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 15/21



Solution 1: Central locking
One dedicated node in the distributed system is assigned a coordinator tracking all
unsatisfied and pending processes requests Pk in a Queue:

Figure: Centralized locking of resources [Tanenbaum]

Let process 3 be the coordinator. Access to a resource is permitted only in case 3 has
provided an Ok message.

(a) Process 1 requests access to resource. Since no other process is asking for permission,
coordinator 3 immediately permits this.

(b) Process 2 is asking for the same resource. Rather for sending a ’disallow’ the coordinator 3
put the request for process 2 in the queue.

(c) Once process 1 has released the resource and notified 3, 2 is informed about it’s permissive
use.

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 16/21



Solution 2: Decentralized/local locking
In this scenario,

all resources in the distributed system needs to be replicated n times
having its own (local) coordinator,
access permissions are given via a majority vote m > n/2 of local
coordinators while
responses from the local coordinator are given immediately.

Consequences:
Amnesia of a coordinator: If a coordinator crashes it has lost all
reported states. Even if the bookkeeping is done persistently, time sync
operations are required; thus better scratch the entire state tables.
Robustness of the distributed system: In order for the system to work,
just a little over 50% of the coordinators need to vote – or are available.
Assuming the availability of a coordinator processes being 99.9% the
probability of a dysfunctional distributed system is extremely small

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 17/21



Solution 3: Mutual exclusion according to Ricart & Agrawala

We consider processes p1, p2, ..., pn
providing mutual exclusion by means of

unique process identifiers (PID),
inter-process communication (perhaps
out-of-band) to each other,
attaching Lamport clocks to each
message.

A process states can be:
released(): outside the critical section
wanted(): trying to enter the critical
section
accessed(): process is within the critical
section

Figure: Mutual exclusion using
Ricart & Agrawala algorithm
with Lamport’s clock
[Coulouris]

A process in state released() immediately answers requests
A process in state accessed() is blocked and does not reply to messages
If more than one process is in state wanted(), the first one collecting n − 1 replies
is allowed to accessed().

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 18/21



Solution 4: Token Ring based means
Exclusive access to a resource can be provided by possessing a particular
message a Token:

Processes needs be be logical ordered in a
ring – irrespective of real network.

A Token is passed around, permitting
access to a critical section.

Conditions Safety and Liveness are fulfilled.

Ordering in time is not achieved and
substituted by the logical process order.

Significant consumption of bandwidth due
to Token passing for every critical resource.

Access delay of resources depend on the
topology (= number of nodes) for the
Token passing. Figure: Mutual exclusion using Token

passing [Coulouris]

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 19/21



Comparison of Solutions

Solution Algorithm #msgs per
entry/exit

Delay entry
(in msg times)

Caveats

1 centralized 3 2 coordinator crash
2 decentralized 2mk +m 2mk Starvation, low efficiency

k = 1, 2, ...
3 distributed 2 ∗ (n − 1) 2 ∗ (n − 1) Crash of any process
4 token ring 1 to ∞ 0 to n − 1 Lost token, process crash

Table: Comparison of solutions for mutual exclusions in Distributed Systems

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 20/21



Important takeaway messages of this
chapter

Coordination in distributed systems is
not trivial

The happened-before relationship is
crucial to assess the global state of a
distributed system

Different ways for mutual exclusion in
distributed systems exist – each with
its individual benefits and drawbacks

Prof. Dr. Oliver Hahm – Distributed Systems – Global State and Synchronization – SS 22 21/21


	Coordination
	Global State
	Mutual Exclusion
	Summary


