
Distributed Systems
Inter-Process Communication

Prof. Dr. Oliver Hahm
Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 1/23

https://teaching.dahahm.de


Agenda

1 Processes

2 Communication

3 Parameter Handling

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 2/23



Agenda

1 Processes

2 Communication

3 Parameter Handling

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 3/23



Programs and Processes

A Program is an executable piece of software including a set of
instructions
A Process is a program currently executed by an operating system

Program Classification

Available in a hardware-specific binary format (and thus including the machine
instructions) to be directly executable by the Operating System.
Example: Windows *.exe and *.com files; UNIX ELF and a.out files

Require an additional Interpreter, usually executing the statements sequentially.
Example: Unix shell scripts, PERL, JAVA scripts

Available in machine-independent binary format (Byte-code) to be executed within
a certain environment: Virtual Machine.
Example: JAVA *.jar files; Python script files

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 4/23



Processes, Threads and LWPs

Processes:
A process possess a environment which is inherited from its parent
The OS manages processes
Each process contains a Process Control Block PCB) which
maintains its attributes

Threads:
Individual tasks within a process may be individual assigned to threads
A process can schedule several (concurrent) threads: multithreading
Unix Operating Systems supporting POSIX Pthreads

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 5/23



Inter-Process Communication (IPC)
In order to cooperatively work on a common task processes need to
exchange information
A process shares common resources (e.g., memory) ⇒ threads may
access these resources concurrently
Processes on the same computer also share common resources (e.g.,
the file system), but in most cases they require support from the OS to
exchange information
Processes in a distributed system have to rely on message passing

What type of information is exchanged?

Occurrence of events
Program flow information
Program data

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 6/23



Agenda

1 Processes

2 Communication

3 Parameter Handling

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 7/23



Types of Inter-Process Communication (IPC)
Files
An resource stored in the file system which can be accessed by multiple
processes
Signals and Flags
Notify another process about the occurrence of an event
Pipes
An unidirectional channel between two processes (can be named or
anonymous)
Shared Memory
A memory block that can be accessed by multiple processes
Message Queues
Processes use a queue for message exchange
(IP and Unix domain) Sockets
An inode or network based communication end point

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 8/23



Files

Linux
File descriptors represent file handles
Part of the POSIX API
Per default every process owns three file descriptors (stdin, stdout,
and stderr)
File descriptors can be used for, e.g., reading, writing, seeking, or
truncating a file

RIOT
Virtual File System may be implemented by various backends
Not all IoT devices provide persistent memory
If available, persistent memory is often realized on flash memory →
wear leveling is required

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 9/23



Signals and Flags

Linux
POSIX signals
Standardized messages to trigger a certain behaviour
The receiver process gets interrupted
If a signal is unhandled by the receiver, it will terminate

RIOT
Thread flags
Optional kernel feature
Notify threads of conditions in a race-free and allocation-less way

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 10/23



Pipes

Linux
A simplex FIFO, i.e., a unidirectional data channel
One process accesses the write end, the other the read end of the pipe
It can be anonymous or named via an inode in the file system

RIOT
No equivalent available

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 11/23



Shared Memory

Linux
POSIX shared memory objects
A shared memory object can be mapped into the process’ memory
space
Shared memory objects are accessed in a similar manner as files

RIOT
Since most MCUs do not provide a MMU, all processes can typically
access all memory regions . . .

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 12/23



Message Queues

Linux
POSIX and System V message queues
Queues are named and can be shared via this name between processes
Message have priorities

RIOT
Kernel messages and mailboxes
Optional feature
Block and non-block API available
A thread may create a message buffer
Mailboxes can be accessed by multiple processes

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 13/23



Sockets

Linux
POSIX (or BSD) Sockets
Common API for Internet and Unix Domain sockets
A socket represents the endpoint of a communication endpoint

RIOT
POSIX Sockets on top of the sock interface
sock is currently implemented for . . .

TCP
UDP
Raw IP
DTLS
DNS

More lightweight and custom-tailored ⇒ less generic

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 14/23



Types of Inter-Process Communication (IPC)

Which type of IPC can be used

for what?

Files
Signals and Flags
Pipes
Shared Memory
Message Queues
(IP and Unix domain) Sockets

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 15/23



Agenda

1 Processes

2 Communication

3 Parameter Handling

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 16/23



Parameter Handling

Heterogeneity Problem
Different encodings (e.g., ASCII, UTF-8)
Endianness → little endian vs. big endian
Differing number formats

Possible solutions
Mapping between local data representations

Sender uses its local representation, the receiver transforms it
⇒ Requires n · n mappings

Canonical network representation for all types
Requires 2n mappings (for n local representations)
Potentially unnecessary encoding

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 17/23



Common Network Representations: XDR
External Data Representation

Defined by Sun as part of SunRPC
Mostly Motorola 68000 data formats: ASCII; big endian, two
complements; IEEE floating points, . . .
Compound data types: arrays, structures, unions
No explicit data typing, i.e., no self-describing data
For RPC systems the parameter types are known for both sides during
generation via the stub codes

Example

1 struct {
2 string author<>;
3 int year;
4 string publisher<>;
5 }

5
Stee
n___
2002
6

Wesl
ey__


each 4 bytes)

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 18/23



Common Network Representations: ASN.1 BER
ISO Abstract Syntax Notation Number 1,
Basic Encoding Rules, ISO 8824, 8825, ITU X.409

Explicit data types, i.e., the type information precedes all data fields
Commonly used: CANopen, LDAP, UMTS/LTE, VoIP, Encryption
Standard representation: (type, length, value)
Drawback: runtime costly (bit access)

Example

1 count ::=INTEGER

0 2 } Type (Identifier)
0 1 } Length
1 A } Value(2610)

each 1 byte (hex)

Type Identifier:
04567

Class Type Tag

1 Boolean
Tag: 2 Integer, ...

16 Sequence

Type: 0 Primitive
1 Constructed

Class: 00 Universal
01 Application...

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 19/23



Common Network Representation: CDR
Common Data Representation

Defintion in OMG CORBA 2.0
Use for CORBA IIOP protocol
Sender uses its own format, "‘Receiver makes it right"’
Simple types (short, long, float, char, ...)
Complex types (sequence, string, union, struct, ...)
Alignment/Padding according to the multiple of the element length
Big endian

Example

1 struct <string, unsigned long>
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

5 ’S’ ’T’ ’E’ ’E’ ’N’ 2002
05 00 00 00 53 54 45 45 4E 00 00 00 00 00 07 D2
← Länge → ← Padding →

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 20/23



Common Network Representations: JSON
JavaScript Object Notation Data Interchange Format

Lean, text based exchange format
Independent of programming languages
RFC 7159, derived from ECMAScript
Easy to parse, many parsers available
Simple types (string, number, boolean, null)
Complex types (object, array)

An object is an unordered list of name/value pairs
A name is a string and the values may be a simple type, an object, or an
array
An array is an ordered sequence of values

Example

1 {
2 "AUTHOR" : "Steen",
3 "YEAR" : 2002,
4 "PUBLISHER" : "Wesley"
5 }

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 21/23



Problems

Complex, compound parameter types
e.g., structs, arrays, require rules for serialization

Addresses in parameters
No meaning at the destination’s address space
Most simple solution: prohibit addresses, only allow call-by-value (e.g.,
SunRPC)
Use of a common, global address space if possible
Replace pointers by markers and reconstruct compound data structures
at receiver side by pointers (e.g., DCE RPC)

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 22/23



Important takeaway messages of this
chapter

IPC is required to exchange
information between processes (or
threads)

Various common concepts exist
implemented differently for different
operating systems

If data is exchanged between hosts in
the network a common interpretation
of the data is required

Prof. Dr. Oliver Hahm – Distributed Systems – Inter-Process Communication – SS 22 23/23


	Processes
	Communication
	Parameter Handling
	Summary


