
COVID-19 Measures

Wear a mask (medical or FFP2)
until you have taken a seat
When seated you may take off the
mask if you can maintain an
interpersonal distance of 1,5 m
Open the windows periodically
whenever possible
Behave reasonable and use common
sense

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 1/37

What do we need to develop in-

teroperable
and portable

soft-

ware?

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 2/37

Distributed Systems
Sockets

Prof. Dr. Oliver Hahm
Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 3/37

https://teaching.dahahm.de

Agenda

1 Motivation

2 UNIX Pipes and Sockets

3 Socket API

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 4/37

Agenda

1 Motivation

2 UNIX Pipes and Sockets

3 Socket API

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 5/37

Towards a Standard Network API

Since about 1980 most of the operating systems possess (still often
proprietary) a interface for network access in order to allow communication
with peer systems. Samples:

Digital (DEC): VMS/OpenVMS ↔ DECnet
Novel: Netware ↔ IPX/SPX
IBM: MVS ↔ VTAM/SNA, VM ↔ IUCV
Microsoft: Windows: ↔ NetBIOS

This conflicts with goal of interoperability!

⇒ Nowadays, the networking approach possess the same level of usage
w.r.t. the file storage concept. In fact, the boundaries between the access
to local and remote resources get more and more blurry (→ e.g., cloud
computing).

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 6/37

Towards a Standard Network API

Since about 1980 most of the operating systems possess (still often
proprietary) a interface for network access in order to allow communication
with peer systems. Samples:

Digital (DEC): VMS/OpenVMS ↔ DECnet
Novel: Netware ↔ IPX/SPX
IBM: MVS ↔ VTAM/SNA, VM ↔ IUCV
Microsoft: Windows: ↔ NetBIOS

This conflicts with goal of interoperability!

⇒ Nowadays, the networking approach possess the same level of usage
w.r.t. the file storage concept. In fact, the boundaries between the access
to local and remote resources get more and more blurry (→ e.g., cloud
computing).

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 6/37

Agenda

1 Motivation

2 UNIX Pipes and Sockets

3 Socket API

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 7/37

Unix Pipes
A pipe can be used to exchange information between processes by means of defined file
descriptors:

1 # (1) Fitering of output by means of pipes
2 cat inputfile | grep -i ’error’
3
4 # (2) Redirection into file
5 cat inputfile | grep -i ’error’ > errorfile
6
7 # (3) Reading from a file and use filterprog
8 filterprog < inputfile # or
9 cat inputfile | filterprog

One process is writing into the pipe, while the
other one is reading.

Unix possesses usually three commonly used
and distinct file descriptors:

0 STDIN: Standard input
1 STDOUT: Standard output
2 STDERR: Standard error

In Unix (and Windows as well) the sign ’|’ is a special command to couple the processes by
means of the pipe; typically used to filter the output.

The output can be re-directed to a file using the special command ’>’.

Processes can read (automatically) from a file (without open it explicitly) employing the
command ’<’.

Co-Processes
A process invoked via the pipe is understood as co-process:
The blocking of the co-process results in the blocking of the
main process.

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 8/37

Unix Sockets
Sockets are part of the TCP/IP protocol family and have been introduced to Unix with
BSD 4.2 in 1982 (→ Berkeley Sockets).

A socket is a communication endpoint
It can be identified by the pair (IP address, Port number)

In order two communicate, two sockets are required to be present on . . .
different computing nodes → Internet Sockets or
the same node → Domain Sockets (realized as a special file)

Sockets can be created and released from a process, and allow a bi-directional
exchange of information among the peers.

Kernelspace Kernelspace

Network or file system

UserspaceUserspace P Q

Process

Socket

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 9/37

Pipes and Sockets
Sockets and Unix Pipes are pretty much comparable from a usage point of view:

Pipes use a handle on a file descriptor to exchange messages,
Sockets use a handle for a network connection.

1 // Reading from a Unix Pipe
2 int read_fd (void) {
3 unsigned long fd ;
4 char envbuf [8192];
5 char ∗x;
6 int j ;
7
8 while ((j = read(fd, envbuf, 8192)) > 0)
9 { ... }

10 }

1 // Writing to an Internet Sockets
2 int tcp_write (void) {
3 unsigned long intfd ;
4 int timeout = 20;
5 int port ;
6
7 intfd = socket(AF_INET, SOCK_STREAM, 0);
8 if (intfd == −1) temp_oserr();
9

10 if (timeoutconn(intfd , &(ip. ix [i]. ip) , (unsigned int) port , timeout)
== 0)

11 { ... }
12 }

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 10/37

Domain Sockets
Unlike a pipe a socket provides a bi-directional connection between the communicating peers:

1 // Declaring a socket
2 #include <sys/types.h>
3 #include <sys/sockets.h>
4
5 int sockets [2];
6 int err_socket;
7
8 err_socket = socketpair(domain,type,protocol , sockets) ;
9

10 // Socket descriptors are stored in array sockets [2];
11 domain = AF_UNIX; // AF_INET used for Internet
12 type = SOCK_STREAM;
13 protocol = 0; // typical for TCP

Actually using a socket:

1 char buf [1024];
2
3 // Define DATA
4 read(sockets [1], buf, 1024);
5 write (sockets [2], DATA, sizeof(DATA));

=⇒ Socket files are typically created in /tmp

srwxr-xr-x 1 hahm wheel 0 17 Jun 12:06 OSL_PIPE_1002_SingleOfficeIPC_d-....
Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 11/37

Agenda

1 Motivation

2 UNIX Pipes and Sockets

3 Socket API

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 12/37

Network Programming with Sockets

Goal: message-oriented IPC between application parts on remote hosts
Introduced in BSD UNIX 4.X in a C API
Eventually became part of POSIX (Portable Operating System
Interface)
Today available for almost any OS (Windows, Linux, RIOT . . .) in
almost any programming language (Java, Python, C# . . .)
The most commonly used interface for programming network
applications in TCP/IP environments
Forms the foundation for all higher layer application layer protocols
(like HTTP)
Support client/server relationship between application components
Java sockets represent BSD sockets as a set of classes

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 13/37

Types of Sockets

Stream Sockets: (SOCK_STREAM)
Reliable communication (typically of a byte stream) between two
endpoints
Connection-oriented transport
For Internet domain sockets TCP is the default protocol

Datagram Sockets: (SOCK_DGRAM)
Unreliable communication of single messages (best-effort delivery)
Connectionless datagram service
For Internet domain sockets UDP is the default protocol

Raw Sockets: (SOCK_RAW)
Allow access to underlying protocols like IP, ICMP . . .
Typically require superuser permissions

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 14/37

Streams and Datagram Sockets

Stream sockets realize a rendezvous between the client and the server by
means of the following system primitives:

Client: connect();
Server: accept();

↪→ Once accept(); has been issued, the server is in blocking I/O mode.

Datagram socket primitives:
Client: sendto();
Server: recfrom();

↪→ Messages are transmitted without the necessity of acknowledgments at
the receiver side.

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 15/37

Socket Calls

The Berkeley Socket family provide the communication over IPv4
(AF_INET) and IPv6 (AF_INET6) networks using the following calls:

Primitive Meaning
socket Create a new communication endpoint
bind Attach a local address to a socket
listen Announce willingness to accept N connections
accept Block until request to establish a connection
connect Attempt to establish a connection
send/sendto/write Send data over a connection
receive/recvfrom/read Receive data over a connection
select Wait on multiple I/O events
shutdown Close a connection
close Release the connection

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 16/37

Socket Datatypes
Header files:
1 #include <sys/types.h>
2 #include <sys/socket.h>

IP address:
1 struct in_addr { uint32_t s_addr; };

Socket address (generic type, used in system calls):
1 struct sockaddr {
2 u_short sa_family; // here AF_xxxx
3 char sa_data[14]; // up to 14~B type specific address
4 };

Socket address (Internet type):
1 struct sockaddr_in {
2 u_short sin_family; // here AF_INET, AF_INET6, or AF_UNIX
3 u_short sin_port; // Port Number (in network byte order)
4 struct in_addr sin_addr; // IP-Adresse (in network byte order)
5 char sin_zero[8]; // unused
6 };

Cast:
1 struct sockaddr_in my_addr;
2 ...
3 (struct sockaddr*) &my_addr ...

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 17/37

Helper Functions: Address Conversion

Unsigned Integer in network byte order

String in dot−decimal notation

Unsigned Integer in host local byte order

htons()

htonl() ntohl()

ntohs()

inet_ntop() inet_pton()

.

Functions defined in
<sys/types.h>
<netinet/in.h>

Functions defined in
<sys/types.h>
<netinet/in.h>
<arpa/inet.h>

htonl()/htons(): host to network long/short
ntohl()/ntohs(): network to host long/short
inet_ntop(): network to presentation/printable
inet_pton(): presentation/printable to network

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 18/37

Helper Function: Address Translation
getaddrinfo()

1 struct addrinfo {
2 int ai_flags; // AI_PASSIVE, AI_CANONNAME, etc.
3 int ai_family; // AF_INET, AF_INET6, AF_UNSPEC
4 int ai_socktype; // SOCK_STREAM, SOCK_DGRAM
5 int ai_protocol; // use 0 for "any"
6 size_t ai_addrlen; // size of ai_addr in bytes
7 struct sockaddr *ai_addr; // struct sockaddr_in or _in6
8 char *ai_canonname;// full canonical hostname
9 struct addrinfo *ai_next; // linked list, next node

10 };

1 #include <sys/types.h>
2 #include <sys/socket.h>
3 #include <netdb.h>
4 int getaddrinfo(
5 const char *node,
6 const char *service,
7 const struct addrinfo *hints,
8 struct addrinfo **res);

"‘Given node and service, which identify an
Internet host and a service, getaddrinfo()
returns one or more addrinfo structures, each
of which contains an Internet address that
can be specified in a call to bind(2) or
connect(2)."’

(⇒ replaces gethostbyname(), getservbyname())

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 19/37

Example

1 int main(int argc, char *argv[])
2 {
3 struct addrinfo hints;
4 struct addrinfo *result;
5 int s;
6 ...
7 memset(&hints, 0, sizeof(struct addrinfo));
8 hints.ai_family = AF_UNSPEC; // Allow IPv4 or IPv6
9 hints.ai_socktype = SOCK_DGRAM; // Datagram socket

10 hints.ai_flags = AI_PASSIVE; // For wildcard IP address
11 hints.ai_protocol = 0; // Any protocol
12 hints.ai_canonname = NULL;
13 hints.ai_addr = NULL;
14 hints.ai_next = NULL;
15 s = getaddrinfo(NULL, argv[1], &hints, &result);
16 if (s != 0) {
17 fprintf(stderr, "getaddrinfo: %s\n", gai_strerror(s));
18 exit(EXIT_FAILURE);
19 }

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 20/37

More Helper Functions

gethostname() Get the name of current host
gethostid() Get the unique ID of current host
getsockopt() Retrieve the current parameters of a

socket
setsockopt() Set the parameters of a socket

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 21/37

Simplified TCP Interaction

process

request

socket()

socket()

connect()

write()/
send()

write()/
send()

read()/
recv()

read()/
recv()

shutdown()

close()

close()

process

server

bind()

listen()

accept()

Mehr?

client

process

connection est.

send request

send response

more?

connection term.

wait for clients

Generalization
A server usually maintains multiple

connections to clients.

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 22/37

Simplified UDP Interaction

socket()

socket()

process

request

close()

process

serverclient

process

bind()

bind()

recvfrom()

sendto()

sendto()

send request

send response
recvfrom()

more?

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 23/37

socket()

Create a Socket
int socket(int family, int type, int protocol)

creates a socket for the Internet domain (family=AF_INET) or UNIX domain
(AF_UNIX) of type stream socket (type=SOCK_STREAM), datagram socket
(SOCK_DGRAM) or raw socket (SOCK_RAW) to be used with the protocol protocol
and returns a descript for the created socket. For protocol typically the value 0
is passed. In this case the default protocol for the specified domain and socket
type is selected. For the Internet domain TCP is the default for a stream socket
and UPD for a datagram socket. No socket address is assigned yet → the socket
is unbound.
Example:
sd1 = socket(AF_INET, SOCK_STREAM, 0)
sd2 = socket(AF_INET, SOCK_DGRAM, 0)

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 24/37

bind()

Binding of a Socket Address
int bind(int sd, struct sockaddr *addr, int addrlen)

binds the socket to the address that has been passed in struct sockaddr. The
type of the address depends on the domain of the socket. For Internet domain
sockets this structure is struct sockaddr_in, for Unix domain sockets a file
name is passed. The socket is registered in the communication system. This
clients of a connection-oriented communication this is not required.
Example:
rc = bind(sd, (struct sockaddr *) &my_addr, sizeof(my_addr))

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 25/37

listen()

Listen for Incoming Connection Requests
int listen(int sd, int qlength)

indicates that the socket sd is waiting for incoming connections. qlength is the
maximum number of queued connection requests which have not yet been
accepted (→ this is not the maximum number of possible clients.
Only required for the server site of connection-oriented communication.
Example:
rc = listen(sd, 5)

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 26/37

accept()
Accept Incoming Connection Requests
int accept(int sd, struct sockaddr *claddr, int *addrlen)

blocks until a new connection request of a client is received on socket sd. Then a
new socket is created and its descriptor is returned. Hence, a a new, private
connection between client and server is created. The socket sd is available for
further connection requests again. The identity of the client (i.e, its remote socket
address) is stored into the passed struct claddr. Its length is set accordingly in
addrlen.
Only required for the server site of connection-oriented communication.
Example:
snew = accept(sd, &clientaddr, &clientaddrlen)

C1

Cn

.....

connect accept

..... server

listen

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 27/37

connect()

Connection Request
int connect(int sd, struct sockaddr *saddr, int saddrlen)

active connection request for a client using its socket sd to a server. The server’s
address is passed in saddr along with the address’ length as saddrlen.
Only required for the client site of connection-oriented communication.
Example:
rc = connect(sd, &saddr, sizeof(saddr))

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 28/37

write()/send() und read()/recv()
Send
int write(int sd, char *buf, int len)
int send(int sd, char *buf, int len, int flag)

the call write is used in the same way as for file descriptors. The call send
accepts an additional argument flag which can be used to set additional options.
Receive
int read(int sd, char *buf, int nbytes)
int recv(int sd, char *buf, int nbytes, int flag)

the call read is used in the same way as for file descriptors. The call recv accepts
an additional argument flag which can be used to set additional options.
Example:
charcount = write(sd, buf, len)
charcount = send(sd, buf, len, sendflag)
charcount = read(sd, buf, len)
charcount = recv(sd, buf, len, recvflag)

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 29/37

shutdown()

Closing a Connection
int shutdown(int sd, int how)

Terminates a connection. The parameter how specify whether and how further
transmission on this connection shall be handled.
The socket descriptor persists and has to be destroyed with a dedicated call to

close().

Example:
rc = shutdown(sd, 2)

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 30/37

select()
Wait for an I/O Event
#include <sys/time.h>
int select(int nfds, int *readmask, int *writemask,
int *exceptmask, struct timeval *timeout)

allows the monitoring of multiple socket or file descriptors in a single process. The
calling process blocks until a particular event (e.g., the descriptor becomes
readable) occurs for one of the specified descriptors – or the given timeout expires.
The maximum waiting time (timeout) may be limited or unlimited.
The set of descriptors are passed via bitmasks. For this purpose some macro
functions, e.g., FD_SET, exist.
When the function returns the value of readmask has changed and contains the
bitmask of these descriptors where the event has occurred. The return value
indicates the number of these descriptors.
Example:
int sd1, sd2;
fd_set fds;
sd1 = socket(AF_INET,...);
sd2 = socket(AF_INET,...);
...

FD_ZERO(&fds);
FD_SET(sd1,&fds);
FD_SET(sd2,&fds);
rc=select(FD_SETSIZE,&fds,
NULL,NULL,timeout);

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 31/37

Java Sockets

Provides an interface for the underlying BSD sockets via multiple
interfaces and classes of the package java.net.
Addressing

InetAddress with subclasses Inet4Address and Inet6Address

SocketAddress with subclass InetSocketAddress
TCP Connections

ServerSocket

Socket

For established connections: getInputStream()/getOutputStream()
Datagram communication via UDP

DatagramPacket

DatagramSocket – MulticastSocket

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 32/37

Server Sockets for Streams

For each configured IP address (IPv4/IPv6) of the server, the available
ports (up to 64K) may be bound to exactly one server process.

Ports below 1024 are privileged ports and may only be used with
particular permissions (Unix root user).
The server processes binds to that port while providing a passively
open communication socket.

Once the client is going to connect to IPServer : PortServer , the socket is
cloned (while a new copy of the server process is instantiated) and
becomes active.

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 33/37

Sockets in the Unix OS
The command ’netstat’ gives an answer which IP and domain sockets are
currently active:

Figure: Output of netstat on a not very busy *nix system

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 34/37

Internet versus Domain Sockets
Unix Domain Sockets

Can only be used on the same node
(requiring a context-switch only)

Same API like the IP sockets, however do
not require . . .

any underlying communication
protocol like TCP/IP
any calculation (and verification) of
checksums

The use the file system to maintain the
name space

The effective Unix permissions
(rwx) are usable, in particular while
creating the socket

⇒ Only those user (on the very same
node) belonging to the respective
user/group have permissions to use
the sockets
Domain sockets inherit the
permissions from the process owner

IP Sockets
IP sockets realize network
transparency (connectivity to a
remote node).

May operate using TCP streams of
UDP datagrams as communication
protocol
→ perhaps requiring the session

overhead of the TCP service

IP sockets via localhost
Use the loopback interface of
the operating system
Behave in the same way, as
usual IP sockets

Require two context switches (at the
client and the server side) to
exchange the data.

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 35/37

Alternatives to POSIX

TLI and STREAMS
UNIX’ Transport Layer Interface (TLI) was based on STREAMS, a
framework for implementing, e.g., network protocols and IPC
TLI was developed mostly with OSI protocols in mind
Today only relevant for historical reasons

sock on RIOT
Designed for constrained devices, i.e., for example, no need for dynamic
memory allocation
Protocol specific interfaces for various network stacks
Wrapper for POSIX sockets is implemented on top
Currently provides interfaces for TCP, UDP, RAW IP, DNS, and DTLS

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 36/37

Important takeaway messages of this
chapter

In order to implement platform
independent distributed applications a
common communication API is
required

The BSD Socket API became the de
facto standard for programming
network applications

This API consists of less than
20 functions to achieve a generic
functionality

Prof. Dr. Oliver Hahm – Distributed Systems – Sockets – SS 22 37/37

	Motivation
	UNIX Pipes and Sockets
	Socket API
	Summary

