
COVID-19 Measures

Wear a mask (medical or FFP2)
until you have taken a seat
When seated you may take off the
mask if you can maintain an
interpersonal distance of 1,5 m
Open the windows periodically
whenever possible
Behave reasonable and use common
sense

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 1/30

Distributed Systems
Basics of Communication

Prof. Dr. Oliver Hahm
Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 2/30

https://teaching.dahahm.de

Agenda

1 Introduction

2 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 3/30

Agenda

1 Introduction

2 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 4/30

Goals

Getting accustomed to a generic message-oriented communication
service with a very high practical relevancy → the Internet and the
TCP/IP protocol suite
Getting to know sockets as a common API for network programming
Communication services on higher layers (e.g., remote procedure calls
(RPCs), web services) are based on these basic services

Layering

Higher layer communication services and middleware platforms offer a more
abstract interface which is aligned with the corresponding cooperation
paradigm. They are based internally on these fundamental concepts of the
underlying communication system

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 5/30

Agenda

1 Introduction

2 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 6/30

Basics of Communication
All interaction between any participants requires an underlying
communication capability
Communication channel

The facility that allows for the connection/coupling of communication
partners is called communication channel or simply channel

Direction of the message flow of a channel
A channel is called directed or unidirectional if one process takes
exclusively the sender role and the other process takes exclusively the
receiver role
Otherwise the channel is called undirected or bidirectional

peer peer

endpoint

communication

endpoint

communication

unidirectional

channel

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 7/30

Aspects of Communication

1 The number of communication peers
2 Addressing
3 Buffering
4 Communication pattern
5 Message structure

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 8/30

Agenda

1 Introduction

2 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 9/30

Number of Peers of a Channel

Exactly two:
Most simple (and most common) case

More than two:
For certain applications group communication may be appropriate
→ multicast service
Special case: Broadcast

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 10/30

Agenda

1 Introduction

2 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 11/30

Direct Addressing

Each communication partner have a distinct, unambiguous (potentially
globally unique) address
Addressing can be explicit and symmetrical
→ The sender must explicitly name the receiver – and vice versa

Example:
SEND (P, message) - Send a message to process P

RECEIVE (Q, message) - Receive a message from process Q

Asymmetrical variant (e.g., for server processes):
→ Only the sender names the receiver, the receiver (server) gets to know

the identity of the sender only on reception
Example:
SEND (P, message)
RECEIVE (sender_id , message)

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 12/30

Indirect Addressing

Communication happens indirectly via intermediary instances
Advantages:

Improved modularity
The number of communication partners can be restructured in a
transparent manner, e.g., after a node failed
Extend options of group communication, like, for example,
m : 1, 1 : n, m : n
Intermediary instance may . . .

only forward
store and forward
transform/translate messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 13/30

Example for Indirect Addressing

Mailbox:
SEND (mbox, message) - Send a message to a mailbox mbox.

RECEIVE (mbox, message) - Receive a message from a mailbox mbox.

sender

process
1

sender

process
m

receiver

process

.....

.....

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 14/30

Agenda

1 Introduction

2 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 15/30

Buffering

Capacity of a channel:
The number of messages which can be stored temporarily in a channel
to decouple sender and receiver in time
The channel’s capability for buffering messages is typically
implemented by a (waiting) queue
In distributed systems the waiting queue is typically realized on the
receiver site (rendezvous site)
Buffering can be used to restore the message order or to modify the
sending order

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 16/30

No Buffering (Capacity Zero)

Unbuffered communication
Sender and receiver are very closely coupled in time
Also called Rendezvous
Often considered to be too inflexible
Example:

A sender is blocked when a SEND operation happens before a
corresponding RECEIVE operation
As soon as the corresponding RECEIVE operation is executed the
message is copied directly without any buffering from the sender process
to the receiver process
If vice versa a RECEIVE operation happens at first, the receiver is
blocked until the SEND operation is executed

Example: Communication between threads in various microkernels such
as RIOT or L4

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 17/30

Limited Capacity

A channel can contain at any point of time a maximum of N messages
(waiting queue with capacity N)
SEND operation during a non-full waiting queue

The message is stored in the queue
The sender process resumes its normal operation

Waiting queue is full (it contains N sent but not yet received
messages):

The sender process blocks until free space in the queue is available
again or the message is discarded
Analogously a receiver is blocked on a RECEIVE operation if the waiting
queue is empty

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 18/30

Consequences
Buffered communication enables loose coupling of the
communication partners in terms of time
Passing the message to the communication system does not imply that
the receiver has received the message
Typically the sender won’t even know a maximum duration until a
message is received
If this knowledge is of importance for the sender an explicitly
communication between sender and receiver is required:

Process P (Sender): Process Q (Receiver):
.
send (Q, message); −→ receive (P, message);

receive (Q, reply); ←− send (P, "’acknowledgement"’);

.

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 19/30

Agenda

1 Introduction

2 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 20/30

Communication Pattern

One-Way
Single message without response or acknowledgement

Request/Response
Client role (consumer)
Server role (producer)
Often blocking on the client site (→ standard RPC)

client

peer

server

request

response

peer

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 21/30

Differing Synchronicity for Request/Response:
Synchronous call: The sender process blocks until the end of the
communication process (→ arrival of the response)
⇒ no parallelism
Asynchronous call: Sender is only delayed for the initiation of the
communication process (→ passing the message to the communication
system)

client

wait

request

process

wait

response

server

send() receive()

reply()

receive_reply()

client

request

response

server

send_call()
receive_call()

send_reply()

(a) synchronous (b) asynchronous

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 22/30

Publisher/Subscriber Model

Message classified by topics or event channels
Receiver subscribe topics (subscriber)
Sender publishes messages or events (publisher)
Model allows for transparent sending of messages to multiple receivers!
Examples: CORBA Notification Service, OMG DDS, MQTT

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 23/30

More Complex Communication Patterns

Not very common in simple communication systems
Exception: Three-way handshake between two participants for reliable
connection establishment
More complex patterns emerge by group communication
Very common on the upper layers
Example: business process

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 24/30

Agenda

1 Introduction

2 Basics of Communication
Number of Communication Peers
Addressing
Buffering
Communication Pattern
Semantics of Messages

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 25/30

Semantics of Messages
Byte stream

Passed messages of various SEND operations cannot be identified as
individual units any more ⇒ message borders get lost
The receiver (and the communication system) observe only sequence of
characters (byte stream)
Example: UNIX pipes

Message container
Messages can be identified by sender and receiver
The messages have either a fixed length or the length can be derived
on both sides

⇒ The message borders remain intact
The correct interpretation of the internal structure of a message is the
responsibility of the communication peers
Example: UNIX message queues

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 26/30

Message Structure
Typed messages

Messages have a typed structure
The type is know to the sender and receiver and partly by the
communication system
The type is used as part of the operations
Exemplary structure of a message:

Receiver

Sender

Type

Size
...

Header

Data

Representation of the
type

Payload

Message body may contain typed objects (→ object-orientation)
Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 27/30

Message Serialization

Example
Java object serialization transforms an object into a bytestream and
vice versa (deserialization)

The header contains information about type, layout etc., the body
contains the actual data
Java class implements the interface java.io.Serializable
All attributes of the class must be serializable themselves or marked
as transient
Operations are writeObject(), readObject()

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 28/30

Messages of a Documental Nature

Example: HTML over HTTP
XML-Documents

Very popular today
Type description via scheme

Example: SOAP (Simple Object Access Protocol)

1 <soap-env:Envelope
2 xmlns:soap-env="http://schemas.xmlsoap.org/soap/envelope/"
3 soap-env:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"
4 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
5 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
6 <soap-env:Body>
7 <tns:getFlaeche xmlns:tns="urn:tns:beispiel">
8 <tns:seite1 xsi:type="xsd:double">8.0</tns:seite1>
9 <tns:seite2 xsi:type="xsd:double">4.0</tns:seite2>

10 </tns:getFlaeche>
11 </soap-env:Body>
12 </soap-env:Envelope>
13

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 29/30

Important takeaway messages of this
chapter

For all higher layer services in a
distributed system an underlying
communication system is required

The facility that enables the
communication between the peers is
called channel

Important characteristics of a
communication system are the number
of participants, the addressing style, its
capacity, the used communication
pattern, and the semantics of the
message

Prof. Dr. Oliver Hahm – Distributed Systems – Basics of Communication – SS 22 30/30

	Introduction
	Basics of Communication
	Summary

