Computer Networks

Transport Layer

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
oliver.hahm@fb2.fra-uas.de
https://teaching.dahahm.de

January 11, 2022

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer - WS 21/22 ~ 1/72

https://teaching.dahahm.de

Agenda

B Characteristics
B TCP
m Basics and Structure
Functioning of TCP
Flow Control
Congestion Control
m Enhancements
m Connection-oriented Communication via Sockets
m Denial-of-Service Attacks via SYN Flood
W UDP
m Basics
m Connectionless Communication via Sockets
Bl Other Protocols
m SCTP
m DCCP
m QUIC

Characteristics
©000000

Agenda

B Characteristics

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21

Characteristics
0800000

Transport Layer

m Functions of the Transport Layer
m Contains end-to-end protocols for inter-process communication
m In this layer, processes are addressed via port numbers
m Application Layer data is split here into smaller parts segments

TCP/IP Reference Model Hybrid Reference Model 0Sl Reference Model

,,’/ Application Layer

,,"/ Presentation Layer
Application Layer | Application Layer Session Layer
Transport Layer | Transport Layer | Transport Layer
Internet Layer | Network Layer | Network Layer
ey | veta Uitk lever | Data Link Layer
\\‘\\ e Physical Layer

m Devices: Gateway
m Protocols: TCP, UDP, QUIC

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21

Characteristics
0080000

Challenges for Transport Layer Protocols

m The Network Layer protocol IP works connectionless and best effort

m IP packets are routed independently of each other to the destination site
m Advantage: Simple, little overhead

m Drawbacks from the user/application perspective

m IP packets can get lost or discarded because the TTL has expired
m IP packets often arrive at the destination site in the wrong order
m Multiple copies of IP packets arrive at the destination

m Reasons:
m Large networks are not static = their infrastructure constantly changes
m Transmission media can fail
m The workload varies and therefore the networks’ delay

m These problems are common in computer networks

m Depending on the application, transport protocols need to compensate
these drawbacks

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21

Characteristics
0008000

Characteristics of Transport Layer Protocols

m Desired characteristics of Transport Layer protocols include. . .
Multiplexing/demultiplexing of multiple services on one host
guaranteed data transmission — end-to-end reliability control
ensuring the correct delivery order

support for data transmissions of any size

the sender must not overload the receiver — end-to-end flow control
the sender must not overload the network — congestion control

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21

Characteristics
0000800

Addressing in the Transport Layer

m Every application, which uses TCP or UDP, has a port number
assigned
m The port specifies which service is accessed
m For TCP and UDP the size of port numbers is 16 bits => the range of
possible port numbers is from 0 to 65,535
m Port numbers! can be grouped into ...
m 0 — 1023: well-known ports or system ports
B These are permanently assigned to applications and commonly known
m 1024 — 49151: registered ports or user ports
m Application developers can register port numbers in this range for own
applications
B 49152 — 65535: ephemeral ports or private ports
B These port numbers are not registered and can be used freely

Thttps://www.iana.org/assignments/service-names-port-numbers/service-names-port-

numbers.xhtml
Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21

Characteristics
0000080

Well-known Port Numbers

A small selection of well-known port numbers:

Port number Service Description
21 FTP File transfer
22 SSH Encrypted terminal emulation (secure shell)
23 Telnet Terminal emulation for remote control of computers
25 SMTP E-mail transfer
53 DNS Resolution of domain names into IP addresses
67 DHCP Assignment of the network configuration to clients
80 HTTP Webserver
110 POP3 Client access to E-mail server
143 IMAP Client access to E-mail server
443 HTTPS Webserver (encrypted)
993 IMAPS Client access to E-mail server (encrypted)
995 POP3S Client access to E-mail server (encrypted)

m Well-known ports and registered ports are assigned by the IANA

m In Linux/UNIX systems: /etc/services

m In Windows systems: %WINDIRY\system32\drivers\etc\services

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21

Characteristics
0000008

Sockets

m Sockets are the platform-independent, standardized interface between
the implementation of the network protocols in the operating system
and the applications

m A socket consists of a port number and an IP address

m Stream sockets and datagram sockets exist

m Stream sockets use the connection-oriented TCP
m Datagram sockets use the connectionless UDP

Tools to monitor the open ports and sockets with. . .

m Linux/UNIX: netstat, 1sof and nmap

= Windows: netstat

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21

B TCP
m Basics and Structure

m Functioning of TCP
m Flow Control

m Congestion Control

m Enhancements

m Connection-oriented Communication via Sockets
m Denial-of-Service Attacks via SYN Flood

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 10/72

TCP
©0000000

Agenda

B TCP
m Basics and Structure

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 11/72

TCP
0@000000

Transmission Control Protocol (TCP)

m Connection-oriented transport layer protocol

m Enables connections over IP in a reliable way

m Ensures that segments reach their destination completely and in the
correct order

m Lost or unacknowledged TCP segments are requested by the receiver at
the sender and sent again

m TCP connections are opened and closed like files
m Equal to files, the position in the data stream is exactly specified

TCP specification: RFC 793 from 1981
http://tools.ietf.org/rfc/rfc793.txt J

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 12/72

http://tools.ietf.org/rfc/rfc793.txt

TCP
00800000

Sequence Numbers in TCP

m TCP treats payload as an unstructured, but ordered data stream
m Sequence numbers are used for numbering the bytes in the data stream

m The sequence number of a segment is the position of the segments first
byte in the data stream

m Example

m The sender splits the application layer data stream into segments
m Length of data stream: 5,000 bytes
m MSS: 1,460 bytes

Segment 1

0...1.459

Sequence number: 0

Segment 2

1.460 ... 2.919

Sequence number: 1.460

Segment 3

2.920 ... 4.379

Sequence number: 2.920

Segment 4

4.380 ... 4.999

Sequence number: 4.380

ELCELES

ELCELES

D Mo > mT
e

Maximum Transfer Unit (MTU): Maximum size of the IP packets

MTU of Ethernet = 1,500 bytes, MTU of PPPoE (e.g., DSL) = 1,492 bytes
Maximum Segement Size (MSS): Maximum segment size

MSS = MTU - 40 bytes for IPv4 header and TCP header

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 13/72

TCP
[eleTeY Yololele}

Structure of TCP Segments (1/5)

32 bits (4 bytes)

m A TCP segment can contain a
fmmmmm e maximum of 64 kB payload (data of the
------------------------ I Application Layer)

|
1 00090000 !Protocol D, Segment length ! m Usually, segments are smaller
Port number (sender) I Port number (dest.) (S 1500 bytes fOF Ethernet)

Seq number

Ack number

TTTET N ’
Lengthl 000000 Eli N HME Receive window

N

Checksum Urgent pointer

Options and padding

Payload
(data from the application layer)

Overhead

m Size of the TCP header (without the options field): just 20 bytes
m Size of the IP header (without the options field): also just 20 bytes

= The overhead, caused by the TCP and IP headers, is small for an IP packet with a size of
several kB

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 14/72

TCP
[eleTeleY Yolele}

Structure of TCP Segments (2/5)

| 32 bits (4 bytes) 1 m The first field contains the source port

e number (sender process)

! lPaddress(destination) + m The next field contains the destination
port number (receiver process)

1 00000000 :Protocol ID: Segment length y

Port number (sender) I Port number (dest.) i
Seqnumber m Seq number contains the sequence
Ack number number of the current segment
roo] 000000 FRFTTTreceive window m ACK number contains the sequence
Checksum Urgent pointer

P e——— number of the next expected segment

Payload
(data from the application layer)

m The length (or data offset) field specifies the size of the TCP header in
32-bit words to tell the receiver where the payload starts in the
segment

m The field is required, because the field options and padding can have a
variable length (a multiple of 32 bits)

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 15/72

TCP
00000800

Structure of TCP Segments (3/5)

32 bits (4 bytes) m The next field contains 6 bits and is

i e reserved, it must contain 000000
1 address (sender) I
o, sty The following six fields contain the
1 00000000 :Protocol ID: Segment length y Control BItS
Port number (sender) I Port number (dest.) . .
r—— m They are required for connection
- establishment, data exchange, and
ck number . . .
Lengthl 000000 El% E g i £ Receive window connection termination
Checksum Urgent pointer m The described functionality for these
Options and padding bits assume them to be set
Payload | 4 IR {—U—Fgeﬁtﬂ—%ﬁe%dﬂseussedﬁﬁdfhrs H i i
(data from the application layer)

o ACK (Acknowledge)
m Specifies that the acknowledgement number in ACK number is valid
m It is also used to acknowledge the reception of segments
m Should be always set after SYN

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 16/72

TCP
00000080

Structure of TCP Segments (4/

32 bits (4 bytes)
I 1 PSH-(Push)}-is-not-diseussed-in-this

1 00000000 :Protocol ID Segment length coutrse
Port number (sender) Port number (dest.) .
l o SYN (Synchronize)

Seq number

——— m Requests the synchronization of the
Lengthl 000000 El% E g i £ Receive window sequence numbers

Checksum Urgent pointer m For connection establishment
Options and padding o Fl N (FInISh)
Payload H H H
(data from the application layer) | Requ.est-s the connection termln.atlon
and indicates that the sender will not

send any more payload

m The field receive window contains the number of free bytes in the
sender’s receive window, which is necessary for flow control

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 17/72

TCP
0000000@

Structure of TCP Segments (5/5)

32 bits (4 bytes)

| 1 ® A pseudo-header is created (but not
== mmmmmmmmmmmmmmmmmmo o transmitted), which includes the IP
1 IP address (sender) 1 . .
e e e I addresses of sender and destination, as
IP address (destination) 1 ” N k |_ . ‘F .
1 00000000 :Protocol ID: Segment length ! well as some etwor ayer Information
Port number (sender) | Port number (dest.) m But the pseudo header fields are used
Seq number together with the regular TCP header
Ack number fields and the payload to calculate the
Lengthl 000000 El% E g i £ Receive window checksum
Checksum Urgent pointer m Protocol ID of TCP =6
Options and padding
Payload The urgent pointer is not discussed in this course [
(data from the application layer)

The fields options and padding must be a multiple of 32 bits
and are not discussed in this course J

Remember NAT from slide set 8. ..

If a NAT device (router) is used, this routing device also needs to recalculate the checksums in TCP segments when
doing IP address translations

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 18/72

@®00000

m TCP

m Functioning of TCP

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 19/72

TCP

[e] Jele]ele]

Functioning of TCP

You already know. ..
m Each segment has a unique sequence number

m The sequence number of a segment is the position of the segments first byte in the data
stream

m The sequence number enables the receiver to. ..
m correct the order of the segments
m sort out segments, which arrived twice — duplicate detection
m The length of a segment is known from the IP header
m This way, missing bytes in the data stream are discovered and the
receiver can request lost segments
m To establish a connection, TCP uses a three-way handshake, where
both communication partners exchange control information in three
steps
m This ensures that the communication partner exists and data
transmissions accepts

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 20/72

TCP

[e]e] le]ele]

TCP Connection Establishment (three-way Handshake)

Server Functionality

m The server waits passively for an incoming connection
B the server must first bind to and listen at a port before he can accept a connection

Client sends a segment with SYN=1 as a request Time Client Server

to synchronize the sequence numbers SYN=1 ACK=0 FIN=0 Seqex Ack=0
= Synchronize (SYN)

Server sends as confirmation a segment with
ACK=1 and requests with SYN=1 to synchronize SYN=1 ACK=1 FIN=0 Seq-y Ack=x+l
the sequence numbers, too
= Synchronize Acknowledge (SYN ACK)

Client confirms with a segment with ACK=1 that

SYN=0 ACK=1 FIN=0 Seg=x+1 Ack=y+1

the connection is established data transmission

= Acknowledge (ACK) v Ll L
m The initial sequence numbers (x and y) are determined randomly
m No payload is exchanged during connection establishment! J

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 21/72

TCP

[e]e]e] lele]

TCP Data Transmission

To demonstrate a data transmission, Seq number (sequence number of the current segment) and
ACK number (sequence number of the expected next segment) need particular values

m In our example at the beginning of the three-way handshake, the client's sequence number
is x=100 and the server's sequence number is y=500

m After completion of the three-way handshake: x=101 and y=>501

The client transmits 1000 bytes payload
. . Time Client Server
Server acknowledges with ACK=1 the received — payload:1000 bytes T

payload and requests with the ACK number 1101 ACK=0 SYN=0 FIN=0 Seq=101 Ack=501
the next segment. In the same segment, the
server transfers 400 bytes of payload

Payload:400 bytes
ACK=1 SYN=0 FIN=0 Seq=501 Ack=1101

The client transmits another 1000 bytes payload.
And it acknowledges the received payload with Payload:1000 bytes
. . ACK=1 SYN=0 FIN=0 Seq=1101 Ack=901
the ACK bit set and requests with the ACK

number 901 the next segment paylosd: bytes

ACK=1 SYN=0 FIN=0 Seq=901 Ack=2101

A Server acknowledges with ACK=1 the received v
payload and requests with the ACK number 2101
the next segment

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 22/72

TCP
[eleteteY Yol

TCP Connection Termination

m Connection termination is similar to the connection establishment

m Instead of the SYN bit set, the FIN bit is used to close the connection,
i.e., indicate that the sender will not transmit any more payload

Time Client Server

ACK=0 SYN=0 FIN=1 Seq=x Ack=y

=

The client sends the request for connection
termination with FIN=1

The server sends an acknowledgment with ACK=1 ACKE1 SYN=O FIN-O Seqey Ackex+l

BN

The server sends the request for connection
termination with FIN=1

ACK=0 SYN=0 FIN=1 Seq=y Ack=x+l

The client sends an acknowledgment with ACK=1
ACK=1 SYN=0 FIN=0 Seq=x+1 Ack=y+1

\4

m No payload is exchanged during connection termination!

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 23/72

TCP

O0000e

TCP — Simplified Finite State Machine

Open:
Requesting
Participant

(“Client")

o m CLOSED: Default state. Still no connection
tactve) m LISTEN: Waiting for a SYN message

e m SYN-SENT: SYN is sent. Waiting for SYN and ACK

m SYN-RECEIVED: Replied with SYN and ACK to SYN.
Waiting for ACK

m ESTABLISHED: The TCP connection is established
and payload can be exchanged

m CLOSE-WAIT: FIN is received. Local application

svn
RECEIVED

fthe
three-way handshake)

:-:""':?-'" needs to reply with ACK
(:ey ¥ o m LAST-ACK: ACK has already been sent. Now FIN is
= sent
'''''' ack . snd it m FIN-WAIT-1: FIN is sent. Waiting for ACK
Ea - e m FIN-WAIT-2: ACK is sent. Waiting for FIN
T eevencx m CLOSING: FIN is received and ACK is sent back
e o m TIME-WAIT: Connection is terminated

00000000

m TCP

m Flow Control

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 25/72

TCP
08000000

Reliable Transmission through Flow Control

m Via flow control, the receiver controls the transmission speed of the
sender dynamically, and this way ensures the completeness of the data
transmission

m Receivers with a low performance should not be flooded with data they
can not process fast enough

B As result, data would be lost

m During transmission, lost data is transmitted again

m Procedure: Transmission retries, when they are required
m Basic mechanisms:

m Acknowledgements (ACK) as feedback (receipt)
m Timeouts

m Concepts for flow control:

m Stop-and-Wait
m Sliding Window

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 26/72

TCP
00@00000

Stop-and-Wait

m After transmitting a segment, the sender waits for an ACK
m If no ACK arrives in a certain time = timeout = segment is sent

again
Sender Receiver Sender Receiver Sender Receiver Sender Receiver
? Segment ? Segment : Segment ? Segment
I I I I
M M M M
E ACK E E ACK E
0 0 0 0 ACK .
u u u u
T T T T
] ? Segment : Segment ? Segment
I I I
Time i L i
E ACK E ACK E ACK
0 0 0
u u u
ACK received v v ACK is lost v ACK arrives too late
- Segment is lost - - ;
i before the and send again and segment and segmevt is
v timeout expired is send again send again

m Drawback: Lesser throughput compared to the transmission-line capacity

The Trivial File Transfer Protocol (RFC 783) operates according to the Stop-and-Wait principle

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 27/72

TCP
00080000

Sliding Window

m A window allows the sender to transmit a certain number of segments
before an acknowledgment is expected

m Upon arrival of an acknowledgment, the transmit window is moved, and
the sender can send further segments

B The receiver can acknowledge several segments at once
= cumulative acknowledgments
m If a timeout occurs, the sender transmits all segments in the window
again
B The sender sends everything again beginning from the last not
acknowledged sequence number

m Objective: Better utilization of the line capacity and receiver capacity

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 28/72

TCP
00008000

Sliding Window — Method: Sender

m The transmit buffer contains data of the Application Layer, which. ..

m has already been sent but not yet confirmed
m is ready to be send, but has not been send up to now

' Transmit buffer H
'

'

R i et . H

Past ' —) Transmit window —) H H

'
SRR [sere ama notyet DO e [L L
L a(l:kntluwleldgelzd aclkn?wleidg?d Ready to send transmilt buffer Free buffer E Not usable LR

— 4 f

Last byte that

has been Last Next Last byte Last
byte byte to that can byte
acknowledged b
. sent be sent be sent written
via ACK

A

Sending application
(writes data into the transmit buffer)

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 29/72

TCP
00000800

Sliding Window — Method: Receiver

m The receive buffer contains data for the Application Layer, which. ..
m is in the correct order, but has not been read
m has been received out of sequence

: Receive buffer H
'
'
................................ .
Past : : — ReCEiVE WINAOW me— H
' '
U I dI Id ' 1 hI 1 _I MI _I 1 _I dI 1 E I I I I I
.« | Received an : In the receive issing Arrived out Free buffer ' Will be discarded | = = =
forwarded buffer bytes of sequence '
1 1 1 1 T 1 1 1 1 T 1 1 1 1 1 1 T T ! | | | | |
Last Next Last last
byte byte byte byte
read expected received receivable

0\

Receiving application
(reads data from the receive buffer)

m The receiver informs the sender about the size of its receive window
m This is important to avoid a buffer overflow!

TCP
00000080

Example of Flow Control in TCP

m The receiver informs the sender in every segment how much free
storage capacity its receive window has

m If the receive window has no free capacity, the sender is blocked until it
gets informed by the receiver that free storage capacity exists

m If storage capacity in the receive window becomes free = A segment
with the current free storage capacity is sent

Transmit window Sender Receiver Receive window
0 2 4 0 2 4
e —>
writes 2 kB 2 kB payload Seg=1
Whessks —>
writes 3 kB 2 kB payload Seq=2049
Sender is blocked
[el] Ack=4097 Win=0
Ack=4097 Win=2048 Application reads 2 kB
Sender could
Time transmitup v0.2 kB «——————— |
[[oxe[]
ke[T 2k

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 31/72

TCP
0000000®

Silly Window Syndrome

m The Silly window syndrome is a problem where a large number of
segments is sent, which increases the protocol overhead
m Scenario
B A receiver is overloaded and its receive buffer is completely filled
m Once the application has read a few bytes (e.g., 1 byte) from the receive
buffer, the receiver sends a segment with the free storage capacity of the
receive buffer
m For this reason, the sender transmits a segment, which contains just
1 byte payload
m Overhead: At least 40 bytes for the TCP/IP headers of each IP packet
(Required are: 1 segment with the payload, 1 segment for the
acknowledgement and eventually another segment which notifies about
the current free storage capacity in the receive window)
m Solution: Silly window syndrome avoidance
m The receiver notifies the sender about free storage capacity in the
receive window not before 25% of the receive buffer is free or a segment
of size MSS can be received

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 32/72

@®000000000

m TCP

m Congestion Control

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 33/72

TCP
0@00000000

Reasons why Congestion occurs

m Possible reasons for the occurrence of congestion:
Receiver capacity
B The receiver can not process the received data fast enough and
therefore its receive buffer becomes full
m Already solved by flow control
Network capacity
m Congestion (overload) occurs when the utilization of a computer
network exceeds its capacity = congestion control
m Only useful reaction to congestion: Reduce the data rate
m TCP tries to avoid congestion by changing the window size dynamically
= dynamic sliding window
m The one solution, which solves both causes does not exist
m Both causes are addressed separately

Signs of congestion of the network

m Packet losses due to buffer overflows in routers
m Long waiting times due to full queues in routers

m Frequent retransmissions due to timeout or packet-/segment loss

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 34/72

TCP

0080000000

Approach to avoid Congestion

32 bits (4 bytes)

m The sender maintains 2 windows ' '
AdVertised Receive WindOW Port number (sender) I Port number (dest.)

Seq number

m Avoids congestion of the receiver
m Offered (advertised) by the receiver

K Congestion Window

® Avoids congestion of the network Payload
= Determined by the Sender (data from the application layer)

m The minimum of both windows is the maximum number of bytes, the
sender can transmit
m Example:

ck number

Length

Urgent pointer

Options and padding

m If the receive window of the receiver has a free storage capacity of
20kB, but the sender recognizes that a network congestion occurs when
more than 12 kB are sent, it transmits only 12 kB

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 35/72

TCP
000®000000

Determine the Size of the Congestion Window

You already know. ..

m The sender can exactly specify the size of the receive window

m Reason: The receiver informs the sender with every segment, about the free storage
capacity of its receive window

m Challenge for the sender: What is the size of the congestion window?

m The sender never knows for sure the capacity of the network
m The capacity of computers networks is not static

B It depends among others of the network utilization and of the
occurrence of network faults

m Solution: The sender must incrementally try to identify the network
capacity

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 36/72

TCP
0000800000

Determine the Congestion Window Size — Connection Establishment

Sender Receiver . . .
— m During connection establishment, the sender

initializes the congestion window to maximum
segment size (MSS)
two segments | | Method
m 1 segment of size MSS is sent

m If the segment is acknowledged before the

timeout expires, the congestion window is

four segments doubled
m 2 segments of size MSS are sent

m If both segments are acknowledged before
the timeout expires, the congestion window is
doubled again

one segment

Time

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 37/72

TCP
0000080000

Determine the Congestion Window Size — Slow Start

consestontnon el m The congestion window grows exponentially until. ..

A

m the size of the receive window is reached, which has
been determined by the sender

m or the threshold is reached

m or a timeout expires

Treshold
60 | is64ke

m The exponential growth phase is called slow start
m Reason: The low transmission rate of the sender at the
beginning
m If the congestion window reaches the size of the receive
window, it stops growing
m At the beginning of the transmission, the threshold
value is 21 bytes = 64 kB, so that it plays no role at
the beginning
® Maximum size of the receive window: 21® — 1 bytes

MSS = 1kB

® This is determined by the size of the field window size
in the TCP header

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 38/72

Transmission

TCP
0000008000

Determine the Congestion Window Size — Congestion Avoidance

Congeston Window [kB]
m If a timeout expires,. ..
m the threshold value is set to the half
congestion window
m and the size of the congestion window
is reduced to the size 1 MSS

P Timeout
Treshold
is 64 kB

a8 |

44 |-

wl congeston m Then, once again the slow start phase
36 b Avoidance ‘FoIIOWS
T Treshold m If the threshold value is reached, the

congestion window grows linear,. ..
® until the size of the receive window
sow is reached, which is determined by
the receiver
® or until a timeout expires

s =110 m The linear growth phase is called

0 2 4 6 8 10 12 14 16 18 20 2 Congestion avoidance

Transmission

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 39/72

TCP

0000000800

Possible Continuation of the Example

Congestion Window [kB]

Treshold

60 | is64ks

Slow
Start

Congestion
Avoidance

Treshold

Timeout.

Slow
Start

Timeout

Congestion
Avoidance

Congestion
Avoidance

Treshold
Treshold

Slow
Start

MSS = 1 kB

Prof. Dr

Oliver Hahm — Computer Networks

Transmission

TCP
0000000080

Reasons why a Timeout expires and reasonable Proceeding

m An expired timeout can have different reasons

m Congestion (= delay)
m Loss of a transmission
m Loss of an acknowledgment (ACK)

m Not only delays due to congestion, but also each loss event reduces the
congestion window to size 1 MSS

m At least in the original congestion control algorithm called Tahoe (1988)

m Modern TCP implementations use different congestion control
algorithms which differ between. ..

m expired timeout caused by congestion of the network
m and multiple arrival of acknowledgments (ACKs) caused by loss event

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 41/72

TCP
0000000008

Additive Increase / Multiplicative Decrease (AIMD)

m The concept of TCP congestion control is called AIMD

m It stands for rapid reduction of the congestion window after a timeout
expired or a loss event occurred and slow (linear) increase of the
congestion window

m Reason for aggressive reduction and conservative increase of the
congestion window:
m The consequences of a congestion window which is too large in size are
worse than for a window which is too small

m If the window is too small in size, available bandwidth remains unused
m If the window is too large in size, segments will get lost and must be
transmitted again

m This increases the congestion of the network even more!
m The state of congestion must be left as quick as possible
m Therefore, the size of the congestion window is reduced significantly

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 42 /72

m TCP

m Enhancements

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 43/72

TCP

TCP Enhancements

Robustness Principle

,, TCP implementations will follow a general principle of robustness: be

conservative in what you do, be liberal in what you accept from others.”
Jon Postel, RFC 793, page 13

m TCP has no version number

m Continuous enhancements and extensions were necessary over time, in
order to ...

m become more efficient
m adapt to changing transmission media (e.g., wireless communication)
m leverage the improving performance of the terminal devices

m The main challenge is to stay compatible

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 44 /72

TCP

Fast Retransmit

Sender Receiver m A lost segment causes a gap in the data

Segment 1 stream at receiver site

Segment 2 . .

segment 3 | K1 m The receiver sends for every additional

Segment 4 ACK 2 received segment an ACK for the
ACK 2 segment before (the lost segment!)

Segment 5 i

Segment 6 w, ™ If a segment gets lost, a reduction of the
ACK 2 congestion window to value 1 MSS is not

necessary

Segment 3 m Reason: A segment loss is not caused by
ACK 6 congestion in any case

Time m If 3 duplicate ACKs arrive, TCP Reno

l (1990) sends the lost segment again

= fast retransmit

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 45/72

TCP

Fast Recovery

Congestion Window [kB]

Segment loss
(Three duplicate ACKs)

Treshold
ist 64 kB

m TCP Reno also avoids the slow start
phase if 3 duplicate ACKs arrive
— fast recovery

Congestion m If 3 duplicate ACKs arrive, the congestion

Avoidance
Fast TCcP

Recovery @ Reno window is set directly to the threshold

] TCP

.® Tahoe value

e m The congestion window grows linear
with every acknowledged
transmission,. . .

Slow

start m until the size of the receive window is
reached, which is specified by the
receiver
MSS = 1k m or until a timeout expires

PRI S T T N N U . T T B B A 1
0 2 4 6 8 10 12 14 16 18 20

Transmission

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 46/72

TCP
0000e

Selective Acknowledgement (SACK)

m TCP only acknowledges continuous segments
—> single segments that get lost inside the sliding window cause the
retransmission of the whole window

m Solution: selectively acknowledge discontinuous segment ranges inside
a window

m The sender has now the chance to retransmit the unacknowledged
segments

m In case of timeout, the sender falls back to resend all segments since
the last cumulative ACK

m In case of a cumulative, the sender aborts retransmitting

Specified in RFC 2018
Is negotiated during connection establishment
Are part of the TCP header options

The sender maintains a separate SACK table

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 47 /72

TCP
o

Summary of Flow Control and Congestion Control

m By using flow control, TCP tries to use the available bandwidth of a
connectionless network (= IP) efficiently
m Sliding windows at sender site (transmit window) and receiver site
(receive window) are used as buffers for sending and receiving
m The receiver controls the transmission behavior of the sender
m Reasons why congestion happens: receiver capacity and network
capacity
m The receive window avoids congestion of the receiver
m The congestion window avoids congestion of the network
m Actual available (used) window = minimum of both windows
m Attempt to maximize the network utilization and react rapidly to
indications for congestion
m Principle of Additive Increase / Multiplicative Decrease (AIMD)

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 48 /72

m TCP

m Connection-oriented Communication via Sockets

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 49 /72

TCP
0e00

Connection-oriented Communication via Sockets — TCP

) Process 1 Process 2 m Client
fime. (clent (Server m Create socket (socket)
et soctot) m Connect client with server socket (connect)
m Send (send) and receive data (recv)
bind() m Close socket (close)
Listen() m Server
reeertl m Create socket (socket)
connect () ———> m Bind socket to a port (bind)
send() —> recv() m Make socket ready to receive (1listen)
m Set up a queue for connections with clients
reqrl) € send0 m Server accepts connections (accept)
R L m Send (send) and receive data (recv)

Close socket (close)

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 50/72

TCP

Sockets via TCP — Example (Server)

1 #!/usr/bin/env python

2 # Echo Server via TCP

3 import socket # Import module socket

4 _ ., o) Process 1 Process 2
5 HOST = # = all interfaces Time (Client) (Server)
6 PORT = 50007 # Port number of server

7

8 # Create socket and return socket deskriptor

9 sd = socket.socket (socket.AF_INET, socket.SOCK_STREAM) socket () socket()
10 # Bind socket to port

11 sd.bind ((HOST, PORT))

12 # Make socket ready to receive bind()

13 # Max. number of connections = 1 listen()
14 sd.listen (1)

15 # Socket accepts connections accept()
16 conn, addr = sd.accept()

17 connect() —>»

18 print(’Connected by’, addr)

19 send() ——» recv()

20 while 1: # Infinite loop

21 data = conn.recv(1024) # Receive data

22 if not data: break # Break infinite loop recv() <€—— send()

23 conn.send (data) # Send back received data

24

25 sd.close() # Close socket v close() close()

$ python tcp_server.py

Prof. Dr. Oliver Hahm — Computer Networks

TCP

Sockets via TCP — Example (Client)

Create socket and return socket deskriptor

10 # Connect with server socket
11 sd.connect ((HOST, PORT))

12

13 sd.send(’Hello, world?’) # Send data

14 data = sd.recv(1024) # Receive data
15 sd.close () # Close socket
16

17 # Print out received data

18 print (’Received:’, repr(data))

1 #!/usr/bin/env python

2 # Echo Client via TCP

3 import socket # Import module socket
4

5 HOST = ’localhost’ # Hostname of Server

6 PORT = 50007 # Port number of server
7

8

9

sd = socket.socket(socket.AF_INET, socket.SOCK_STREAM)

$ python tcp_client.py
Received: ’Hello, world’

$ python tcp_server.py
Connected by (’127.0.0.1°, 49898)

Prof. Dr. Oliver Hahm — Computer Networks

Time

Process 1 Process 2
(Client) (Server)
socket () socket ()

bind()
listen()
accept()

connect() —————>
send() —» recv()

recv() <€—— send()

close() close()

m TCP

m Denial-of-Service Attacks via SYN Flood

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 53/72

TCP
oce

Denial-of-Service Attacks via SYN Flood

m Target: Making services or servers inaccessible

m A client sends multiple connection requests (SYN), but does not
respond to the acknowledgments (SYN ACK) of the server via ACK
m The server waits some time for the acknowledgment of the client
m The confirmation delay could be caused by a network issue
m During this period, the address of the client and the status of
incomplete connection are stored in the memory of the network stack
m By flooding the server with connection requests, the table, which stores
the TCP connections in the network stack is completely filled
= the server gets unable to establish new connections

m The memory consumption at the server may become this large that the
main memory gets completely filled and the server becomes
unresponsive

m Countermeasure: Real-time analysis of the network by intelligent
firewalls

B UDP
m Basics
m Connectionless Communication via Sockets

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 55/72

B UDP
m Basics

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 56/72

User Datagram Protocol (UDP)

m Connectionless transport layer protocol
m Transmissions take place without previous connection establishment

m More simple protocol in contrast to the connection-oriented TCP =
more lightweight

m Only responsible for addressing of the datagrams
m No guarantees — best effort
m Datagrams can get lost, duplicated, or arrive out of order

m Depending on the application (e.g., video streaming) this is accepted
m UDP causes lesser delay compared to TCP

m Allows for multicast and broadcast

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 57/72

User Datagram Protocol (UDP)

m Maximum size of an UDP datagram: 65,535 Bytes

m Reason: The size of the length field inside the UDP header, which
contains the datagram length, is 16 bits

B The maximum representable number with 16 bits is 65,535
m UDP datagrams of this size are transmitted fragmented by IP

IP packet of the Network Layer

IP header | UDP header Data of the application layer (message)
UDP segment of the Transport Layer
UDP standard: RFC 768 from 1980
http://tools.ietf.org/rfc/rfc768.txt J

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 58/72

http://tools.ietf.org/rfc/rfc768.txt

Structure of UDP Segments

m The UDP header consists of 4 fields, each of 16 bits size
m Port number (sender)
B The field can stay empty (value 0), if no response is required
Port number (destination)
Length of the complete datagram (without pseudo-header)
Checksum of the complete datagram (including pseudo-header)

. . 32 bits (4 bytes)
m A pseudo-header is created, which I ,

inclL!des.the IP addresses of sender and 1mmmmmms o TR
destination, as well as some Network — [=====575is-C -t ns=-===" |
Layer information | Sb066000 Throtocol 154 Seqment length
m Protocol ID of UDP = 17 Port number (sender) | Port number (dest.)
m The pseudo-header is not transmitted Segment length Checksum

Payload
(data from the application layer)

m But it is used for the checksum

calculation
Remember NAT from slide set 8. ..

If a NAT device (Router) is used, this routing device also needs to recalculate the checksums in UDP datagrams
when doing IP address translations

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 59/72

Bl UDP

m Connectionless Communication via Sockets

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 60/72

ubDP
0®00

Connectionless Communication via Sockets — UDP

Process 1 Process 2
Time (Client) (Server)
m Client
socket() socket() m Create socket (socket)
m Send (sendto) and receive data (recvfrom)
_ m Close socket (close)
bind()
m Server
sendtol) —— > recutron() = C.reate socket (socket)
m Bind socket to a port (bind)
recvfron() €—— sendto() m Send (sendto) and receive data (recvfrom)
m Close socket (close)
A\ close() close()

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 61/72

Sockets via UDP — Example (Server)

1 #!/usr/bin/env python
2 # Server: Receives a message via UDP
3 Process 1 Process 2
4 import socket # Import module socket Time (Client) (Server)
5
6 # For all interfaces of the host
7 HOST = ’° # °’ = all interfaces
8 PORT = 50000 # Port number of server socket () socket ()
9
10 # Create socket and return socket deskriptor
11 sd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
12 bind()
13 try:
14 sd.bind ((HOST, PORT)) # Bind socket to port
15 while True:
16 # Receive data sendto() ——» recvfrom()
17 data = sd.recvfrom(1024)
18 # Print out received data
19 print (’Received:’, repr(data)) recvfrom() €—— sendto()
20 finally:
21 sd.close () # Close socket
A\ close() close()

$ python udp_server.py

Prof. Dr. Oliver Hahm — Computer Networks

Sockets via UDP — Example (Client

1 #!/usr/bin/env python

§ # Client: Sends a message via UDP Process 1 Process 2
. Time (Client) (Server)

4 import socket # Import module socket

5

6 HOST = ’localhost’ # Hostname of Server

7 PORT = 50000 # Port number of Server

8 MESSAGE = ’Hello World’ # Message socket () socket ()

9

10 # Create socket and return socket deskriptor

11 sd = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)

12 bind()

13 # Send message to socket

14 sd.sendto (MESSAGE, (HOST, PORT))

15

16 sd.close() # Close socket sendto() —— recvfrom()
e Ey—— recvfrom() €—— sendto()
$ python udp_server.py A\

close() close()

Received: (’Hello World’, (°127.0.0.1°, 39834))

Prof. Dr. Oliver Hahm — Computer Networks

Other Protocols

Bl Other Protocols
m SCTP
m DCCP
m QUIC

Other Protocols

[Je}

Bl Other Protocols
m SCTP

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 65/72

Other Protocols
oce

Streaming Control Transmission Protocol (SCTP)

m Connection-oriented transport layer protocol

m Specified in RFCs 4960, 6096, 6335, and 8260
m Message-oriented

m Supports messages of arbitrary size (using fragmentation)

m Smaller messages can be consolidated into one SCTP packet
m Allows for multiple streams per connection

m Stream properties are configurable separately
B Reliability
m Order
B Flow- and congestion control
B Priorities

m Supports mobility
m Implements SACK

m Design goal: Differentiation between application data
e.g., real-time audio/video versus large data

m Used for real-time browser-to-browser communication — WebRTC

Other Protocols

{ Je}

Bl Other Protocols
m DCCP

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 67/72

Other Protocols
oce

Datagram Congestion Control Protocol (DCCP)

m Connection-oriented transport layer protocol

m Specified in RFC 4340

m Unreliable unicast transport with congestion control
m Reliable connection establishment

m Designed for real-time applications

m Detects packet lost without retransmissions

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 68/72

Other Protocols

[Jele}

Bl Other Protocols

m QUIC
Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 69/72

Other Protocols
oo

New Challenges: Modern WWW

hitp request pipelining pipelining hitp multiplexing
head of line biocking with spdy

client server client server client sarver client server

awp
awn

\
b

v
close

= close
close

Source: KSkun's blog, https://ksmeow.moe/quic/

m Problem: Modern web pages consists of multiple individual downloads
— sequential loading is slow

m TCP stops the download as soon as the stream is interrupted — head
of line blocking

m Solution: UDP plus connection management

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 70/72

Other Protocols

ooe

Quick UDP Internet Connections (QUIC)

HTTP/2 HTTP/2
 Muiisioaming Mutisrearing

Congestion Control

Congestion Control

TCP UbP
(IP J
m Goal: reduced latency

m Specified in RFCs 8999 and m Improved packet loss and
9000 congestion handling

m Fast connection management ™ |ntegrated TLS support
m Fast connection — security
establishment
m Full multiplexing of
streams

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 T71/72

m Multipath support

Other Protocols
°

You should now be able to answer the
following questions:

m What are characteristics of a
transport layer protocol?

m What is a socket?

m Why do we need multiple
transport layer protocols on top
of IP?

m What is the difference between
TCP and UDP?

m How does flow control and
congestion control work in TCP?

Prof. Dr. Oliver Hahm — Computer Networks — Transport Layer — WS 21/22 T72/72

	Characteristics
	TCP
	UDP
	Other Protocols

