Computer Networks Data Link Layer - Logical Link Control

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
 oliver.hahm@fb2.fra-uas.de
 https://teaching.dahahm.de

December 07, 2021

Error Control	Flow Control	Address Resolution
00000000000000000	00	00000
Agenda		

Error Control

- Failure Causes
- Error Detection
- Error Correction

Flow Control

Error Control	Flow Control	Address Resolution
0000000000000000	00	00000

Agenda

Error Control

- Failure Causes
- Error Detection
- Error Correction

Flow Control

Error Control	Flow Control	Address Resolution
000000000000000000000000000000000000000	00	00000

Error Control Failure Causes

- Error Detection
- Error Correction

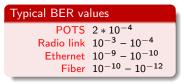
Flow Control

Flow Control

Failure Causes

During the transmission of bit sequences on the physical layer errors may occur

They are typically caused by...


- Signal deformation
 - Attenuation of the transmission medium
- Noise
 - Thermal or electronic noise
- Crosstalk
 - Interference by neighboring channels
 - Capacitive coupling increases with increasing frequency

Short-time disturbances

- Cosmic radiation
- Defective or insufficient insulation

The LLC sublayer ensures that errors are detected and handled

Burst errors are more common than single bit errors

Error Control	Flow Control	Address Resolution
000000000000000000000000000000000000000	00	00000

Flow Control

Checksum

Checksum

The checksum is calculated by a pre-defined algorithm for a block of data. They are typically used for the verification of the data integrity.

- For error detection, the sender attaches a checksum at each frame
- The receiver can now detect erroneous frames and discard them
- Possible checksums:
 - Parity-check codes
 - The polynomial code Cyclic Redundancy Checks (CRCs)

Error Control	Flow Control	Address Resolution
000000000000000000000000000000000000000	00	00000

Hamming Distance

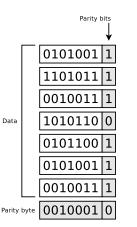
- Each message (→ codeword) of *n* bytes contains *m* bytes of payload and *r* bytes of checksum
- Typically all 2^m data messages are allowed, but not all 2ⁿ codewords are valid


• The minimum distance between two valid codewords is called the Hamming distance

In order to detect d errors, the distance needs to be d+1

- $\blacksquare \rightarrow d$ flipped bits won't create another valid codeword
- In order to correct d errors, the distance needs to be 2d + 1
 - \blacksquare \rightarrow The resulting word with d *flipped* bits is still closer to the original codeword than to any other

Error Control	Flow Control	Address Resolut
000000000000000000000000000000000000000	00	00000


One-dimensional Parity-check Code

- Well-suited for short blocks of data, e.g., 7-bit US-ASCII characters
- For each 7-bit section, an additional parity bit is calculated and attached to balance out the number of 1 bits in the byte
 - If the protocol defines even parity, the parity bit is used to obtain an even number of 1 bits in every byte
 - If odd parity is desired, the parity bit is used to obtain an odd number of 1 bits in every byte
 - \implies one-dimensional parity-check code

Error Control	Flow Control	Address Resolution
000000000000000000000000000000000000000	00	00000

Two-dimensional Parity-check Code

- For each byte exists, in addition to the parity bits, an additional parity byte
 - The content of the parity byte is calculated over each byte of the frame

 \implies two-dimensional parity-check code

 All 1-bit, 2-bit and 3-bit errors and most of the 4-bit errors can be detected via two-dimensional parity-check codes

Source: Computernetzwerke, Larry L. Peterson, Bruce S. Davie, dpunkt (2008)

Cyclic Redundancy Check (CRC)

- Bit sequences can be written as polynomials with the coefficients 0 and 1
- A frame with k bits is considered as a polynomial of degree k-1
 - The most significant bit is the coefficient of x^{k-1}
 - The next bit is the coefficient of x^{k-2}
 - • •

Ι

Example: The bit sequence 10011010 corresponds to this polynomial:

$$\mathcal{M}(x) = 1 * x^{7} + 0 * x^{6} + 0 * x^{5} + 1 * x^{4} + 1 * x^{3} + 0 * x^{2} + 1 * x^{1} + 0 * x^{0}$$

= $x^{7} + x^{4} + x^{3} + x^{1}$

Reminder: Polynomials in mathematics

A polynomial is an expression which consists of variables and coefficients and non-negative integer exponents

CRC Generator Polynomial

- The CRC specification defines a generator polynomial C(x)
 - The degree of the generator polynomial determines how many bit errors can be detected
- C(x) is a polynomial of degree k
 - If e.g. $C(x) = x^3 + x^2 + x^0 = 1101$, then k = 3
 - Therefore, the degree of the generator polynomial is 3

The degree of the generator polynomial is equal to the number of bits minus one

Selection of common Generator Polynomials

CRC-5

Polynomial: $x^5 + x^2 + x^0$ **Representation:** 0x05 **Application:** USB

CRC-8

Polynomial: $x^8 + x^7 + x^5 + x^2 + x^1 + x^0$ Representation: 0xA7 Application: Bluetooth

CRC-16-IBM

Polynomial: $x^{16} + x^{15} + x^2 + x^0$ Representation: 0×8005 Application: Bisync, Modbus

• CRC-16-CCITT Polynomial: $x^{16} + x^{12} + x^5 + x^0$ Representation: 0×1021 Application: HDLC

CRC-32

Polynomial: $x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^8 + x^7 + x^5 + x^4 + x^2 + x^1 + x^0$ Representation: 0x04C11DBB7 Application: Ethernet Flow Control

Example of Cyclic Redundancy Check (1/4)

- The generator polynomial has 6 digits
 - Therefore, five 0 bits are appended

Frame (payload):	10101
Frame with appended 0 bits:	1010100000

- The frame with the appended 0 bits is divided from the left only via XOR by the generator polynomial
 - Always start with the first common 1
 - The remainder is the checksum

XOR operation	
1 XOR 1 = 0	0 XOR 1 = 1
1 XOR 0 = 1	0 XOR 0 = 0

The sender calculates the checksum

1010100000 100101|||| 111100|| 100101|| -----v| 110010| 100101| -----v 101110 100101 -----v

1011 = Remainder

Example of Cyclic Redundancy Check (2/4)

fill the remainder

- The remainder must consist n bits and n is the degree of the generator polynomial
- If the remainder is shorter than *n*, it must be *filled* with zeros
- The checksum is appended to the payload
 - The length of the remainder must be *n* bits
 - n is the degree of the generator polynomial
- Result: 01011 will be appended to the frame
- Transmitted frame including checksum (code polynomial): 1010101011

Generator polynomial:	100101
Frame (payload):	10101
Frame with appended 0 bits:	1010100000
Remainder:	1011
Transferred frame (code polynomial):	1010101011

Example of Cyclic Redundancy Check (3/4)

Error-free reception

Transferred frame (code polynomial):	1010101011
Generator polynomial:	100101

- The receiver of the frame is able to verify, if the frame did arrive error-free
- By dividing (only via XOR) by the generator polynomial, transmissions with errors are detected
 - For division with XOR, always start with the first common 1
- If the remainder of the division is 0, then the transmission was error-free

The receiver verifies if the transmission was error-free

Flow Control

Address Resolution

Example of Cyclic Redundancy Check (4/4)

Reception of an erroneous frame

Transferred frame (code polynomial):	1 1 10101011
Generator polynomial:	100101
Correct Transmission:	1010101011

- If the transmitted frame contains a defective bit, the remainder of the division via XOR not 0
- CRC cannot detect all errors

The receiver verifies if the transmission was erroneous

Properties of CRCs

Most important characteristic

A polynomial code with r check bits will detect all burst errors of length $\leq r$

- If the error consists of a multiple of the polynomial code of the used CRC it will not be detected
- CRC-16-CCITT for example will detect
 - All single, double and three-bit errors
 - All error samples with odd number of bit errors
 - All error bursts with up to 16 bits (see above)
 - 99.997 % of all 17-bit error bursts
 - 99.998 % of all error bursts with lengths \geq 18
- Calculation of CRC can be implemented by a simple shift register circuit in hardware

Error Control	Flow Control	Address Resoluti
000000000000000000000000000000000000000	00	00000

Error Control Failure Causes Error Datastia

- Error Detection
- Error Correction

Flow Control

Address Resolution

ion

Forward Error Correction (FEC)

Error Control

Error correction requires more redundant information to be added compared to error detection

Flow Control

- Upon error detection the frame typically needs to be retransmitted
- \blacksquare \Rightarrow For somewhat reliable transmission channels simple error detection is cheaper
- \Rightarrow For error-prone transmission media (\rightarrow wireless communication) error-correction may be cheaper, because it reduces the amount of retransmissions
- (Forward) Error Correction can be realized via Hamming code
 - Named after the mathematician Richard Wesley Hamming (1915-1998)

Simple Example of Error Correction

Remember

In order to correct d errors a code needs a Hamming distance of 2d + 1

- Assume a code with only four valid codewords
 - $w_1 = 000000000$
 - $w_2 = 0000011111$
 - $w_3 = 1111100000$
- \Rightarrow The Hamming distance is 5
 - It can detect up to four bit errors
 - It can correct up to two bit errors
- Example:
 - If 0000000111 is received, the original must be 0000011111 (correct)
 - If 0000000000 is changed to 0000000111, the error is not corrected properly

Error Control	Flow Control	Address Resolution
000000000000000000000000000000000000000	•0	00000
Agenda		
, genaa		

Error Control

- Failure Causes
- Error Detection
- Error Correction

Flow Control

Error Control	Flow Control	Address Resolution
0000000000000000	0•	00000

Reliable Transmission through Flow Control

- Flow control allows the receiver to negotiate the transmission speed with the sender dynamically
 - Less powerful receivers or receivers under high load are not flooded with data
 - If a host receives data at a higher rate than it can handle it, data will get discarded and is lost
 - Concepts of flow control:
 - Stop-and-Wait
 - Sliding-Window

Ethernet does not implement flow control mechanisms on Data Link Layer

Error Control	Flow Control	Address Resolution
00000000000000000	00	0000

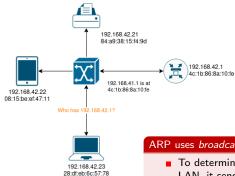
Agenda

Error Control

- Failure Causes
- Error Detection
- Error Correction

Flow Control

Error Control	Flow Control	Address Resolution ○●○○○
Address Resolution		


*wlan0					
<u>F</u> ile	Edit View Go Ca	pture <u>A</u> nalyze <u>S</u> tatisti	cs Telephon <u>y W</u> ireless <u>T</u> ools <u>I</u>	<u>H</u> elp	
		🗎 🖹 🙆 🍳 🦛	⇒ ≝ ∓ ± 📃 🛛		II
📕 arp)				
No.	Time	Source	Destination	Protocol	Length Info
	34 2.285651537	Arcadyan_8a:10:fe	IntelCor_6c:57:78	ARP	42 Who has 192.168.1.111? Tell 192.168.1.1
	35 2.285673975	IntelCor 6c:57:78	Arcadvan 8a:10:fe	ARP	42 192.168.1.111 is at 28:df:eb:6c:57:78

- The network layer requires a mapping between physical and logical network addresses
- For IPv4 the Address Resolution Protocol (ARP) is used to resolve IPv4 addresses to MAC addresses ¹
- For IPv6 the Neighbor Discovery Protocol (NDP) accomplishes the same

¹In fact, the original ARP specification, RFC 825, was written for IPv4 and Ethernet, but the functioning is not bound to IPv4 or any particular layer 2 protocol.

Error Control	Flow Control	Address Resolution
00000000000000000	00	00000

ARP and NDP

Simplified ARP message flow

NDP

In NDP routers and nodes can send proactively advertisements or be inquired via router and neighbor solicitations

ARP uses broadcast messages:

- To determine the MAC address of a network device in the LAN, it sends out a MAC broadcast frame containing the IP address
- Each network device that receives the frame compares this IP address to the address assigned to it
- If a network device has this IP address, it sends an ARP response to the sender via unicast
- The original sender can now map the source MAC address of the response to the searched IP address

Error Control	Flow Control	Address Resolution
ARP Cache/Neighbor Cache		

■ The ARP cache is used to speed up the address resolution

- It contains a table with these information for each entry:
 - Layer 3 protocol type (e.g., IPv4)
 - Layer 3 address (e.g., its IPv4 address)
 - Layer 2 address (MAC address)
 - Lifetime
- The lifetime is set by the operating system
- If an entry in the table is active, the lifetime is extended

The ARP cache can be displayed via arp -n or ip neighbour

# arp -n				
Address	HWtype	HWaddress	Flags Mask	Iface
192.168.178.1	ether	9c:c7:a6:b9:32:aa	C	wlan0
192.168.178.24	ether	d4:85:64:3b:9f:65	C	wlan0
192.168.178.41	ether	ec:1f:72:70:08:25	C	wlan0
192.168.178.25	ether	cc:3a:61:d3:b3:bc	C	wlan0

Address resolution requests can be send manually via arping

You should now be able to answer the following questions:

- Which requirements need to be fulfilled to allow for error detection and correction?
- What is a CRC checksum and how does it work?
- For which purpose do we need ARP and NDP and how do they work?

