Components and Terms

Reference Models

Topologies

# COVID-19 Measures

- Always wear a mask (medical or FFP2)
- Open the windows periodically whenever possible
- Maintain an interpersonal distance of at least 1.5 m
- Behave reasonable and use common sense



Historical background

Components and Terms

Reference Models

Topologies

# Computer Networks

Prof. Dr. Oliver Hahm

Frankfurt University of Applied Sciences
Faculty 2: Computer Science and Engineering
 oliver.hahm@fb2.fra-uas.de
 https://teaching.dahahm.de

October 26, 2021

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies |
|--------------------|-----------------------|----------------------|------------------|------------|
| Agenda             |                       |                      |                  |            |

- About this lecture
- Historical background
- Components and Terms
- Reference Models
- Topologies

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies |
|--------------------|-----------------------|----------------------|------------------|------------|
| Agenda             |                       |                      |                  |            |

- Historical background
- Components and Terms
  - Reference Models

### Topologies

Historical background

Components and Terms

Reference Models

Topologies

# Interaction in this Lecture

- Participate lively
- Ask questions!
- A key attribute for science is scepticism



"Education is a dialogue not a one way monologue"  $^1$ 

<sup>1</sup>JNICSR Times, http://jnicsrtimes.com/?p=1476

Prof. Dr. Oliver Hahm – Computer Networks – Introduction – WS 21/22

| About this lecture | Historical background | Components and Terms | Reference Models | <b>Topologies</b><br>00000000000 |
|--------------------|-----------------------|----------------------|------------------|----------------------------------|
| About mo           |                       |                      |                  |                                  |



- Study of Computer Science at Freie Universität Berlin
- Software Developer for ScatterWeb and Zühlke Engineering
- Research on IoT and Operating Systems

#### Contact

**E-mail:** oliver.hahm@fb2.fra-uas.de **Office hours:** Tuesdays 14:15 – 15:15, room 1-212

Components and Terms

Reference Models

Topologies

# Join the RIOT!

You're interested in ...

- ... programming the IoT?
- ... collaborate with hundreds of people from all over the world?
- ... contribute to a big FLOSS project?





Contact me or meet the community at https://riot-os.org/community.html

Components and Terms

Reference Models

Topologies

# Organizational

■ Lecture: Tuesday 10:00 – 11:30, room 4-8

Exercises

- Tuesday 11:45 13:15, room BCN-421
- Tuesday 16:00 17:30, room 1-235
- Wednesday 10:00 11:30, room 1-234
- Wednesday 11:45 13:15, room 1-234
- Thursday 14:15 15:45, room 1-235
- Thursday 16:00 17:30, room 1-235

Written exam

### Moodle

Enrolment Key: CompNetHahm

Components and Terms

Reference Models

Topologies

# Organizational

- Lecture: Tuesday 10:00 11:30, room 4-8
- Exercises
  - Tuesday 11:45 13:15, room BCN-421
  - Tuesday 16:00 17:30, room 1-235
  - Wednesday 10:00 11:30, room 1-234
  - Wednesday 11:45 13:15, room 1-234
  - Thursday 14:15 15:45, room 1-235
  - Thursday 16:00 17:30, room 1-235

Moodle

Enrolment Key: CompNetHahm

Written exam

### Please note!

- There is no registration for the exercises, but the room size is limited!
- First come, first serve!
- There is a dedicated lecture and exercise for students of Mobile Applications

| About this lecture                      | Historical background | Components and Terms                    | Reference Models                        | Topologies |
|-----------------------------------------|-----------------------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 000000                | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000000 |
|                                         |                       |                                         |                                         |            |

# Further Information

#### Course page

All material regarding this course can be found at https://teaching.dahahm.de.

### This includes

- Announcements
- Slides
- Exercises

| About this lecture                      | Historical background | Components and Terms                    | Reference Models                        | Topologies |
|-----------------------------------------|-----------------------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000000000000000000000000000 | 000000                | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000000 |
|                                         |                       |                                         |                                         |            |

# Further Information

#### Course page

All material regarding this course can be found at https://teaching.dahahm.de.

This includes

- Announcements
- Slides
- Exercises

#### Do not ask!

Everything is relevant for the exam.

| About this lecture | Historical background | Components and Terms | Reference Models | <b>Topologies</b><br>00000000000 |
|--------------------|-----------------------|----------------------|------------------|----------------------------------|
| CIV. I             |                       |                      |                  |                                  |

### Slides

- The creation of the slide sets is work in progress
- They cover all topics of the lecture
- BUT they are no book and, hence, do not comprise
  - all details
  - all derivations
  - all thoughts and discussions which are part of the lecture and exercises

- $\Rightarrow$  participate
- ⇒ ask questions
- $\Rightarrow$  take notes
- $\Rightarrow$  do your own research (e.g., use the books)



### Exercises

The exercises are no legal precondition for participating in the exam,  $\underline{BUT}$  they...

- ... are very important to recap the content.
- ... are a good opportunity to check your understanding.
- ... provide the chance to ask me all your questions.



| About this lecture | Historical background | Components and Terms | Reference Models                        | Topologies |
|--------------------|-----------------------|----------------------|-----------------------------------------|------------|
| 0000000000000000   | 000000                | 00000000000000000000 | 000000000000000000000000000000000000000 | 0000000000 |
|                    |                       |                      |                                         |            |



What is necessary to pass the exam?

You should be able to ...

- explain main concepts and ideas with your own words,
- select a suitable solution for a given problem,
- analyze a given solution and detect (potential) problems, and
- explain your answers.

Components and Terms

Reference Models

Topologies

### Literature

- Andrew Tanenbaum, David Wetherall: "Computer Networks", 5th Ed., Pearson, 2011.
- James F. Kurose, Keith Ross: "Computer Networking", 8th Ed., Pearson, 2021.
- G. Krüger, D. Reschke: *"Lehr- und Übungsbuch Telematik"*, 3th Ed., Hanser, 2004. (**German**)







Historical background

Components and Terms

Reference Models

Topologies

### More Literature



You can download both books for free via the FRA-UAS library from the intranet

Historical background

Components and Terms

Reference Models

Topologies

# The Relevance of Computer Networks

<sup>2</sup>License: https://creativecommons.org/licenses/by/2.0/deed.en Prof. Dr. Oliver Hahm – Computer Networks – Introduction – WS 21/22



Historical background

Components and Terms

Reference Models

Topologies

# The Relevance of Computer Networks

- Video streaming
- Online gaming
- Instance messengers
- Video conferences (→ home office)
- Mobile communication
- Smart home ( $\rightarrow$  IoT)
- Car infotainment



<sup>2</sup>License: https://creativecommons.org/licenses/by/2.0/deed.en Prof. Dr. Oliver Hahm – Computer Networks – Introduction – WS 21/22

Historical background

Components and Terms

Reference Models

Topologies

# The Relevance of Computer Networks

- Video streaming
- Online gaming
- Instance messengers
- Video conferences (→ home office)
- Mobile communication
- Smart home ( $\rightarrow$  IoT)
- Car infotainment



https://bit.ly/3jB5yRe

#### The most popular network?

<sup>2</sup>License: https://creativecommons.org/licenses/by/2.0/deed.en Prof. Dr. Oliver Hahm - Computer Networks - Introduction - WS 21/22

Historical background

Components and Terms

Reference Models

Topologies

# The Relevance of Computer Networks

- Video streaming
- Online gaming
- Instance messengers
- Video conferences (→ home office)
- Mobile communication
- Smart home ( $\rightarrow$  IoT)
- Car infotainment



https://bit.ly/3jB5yRe

### The most popular network?

The Internet

<sup>2</sup>License: https://creativecommons.org/licenses/by/2.0/deed.en Prof. Dr. Oliver Hahm – Computer Networks – Introduction – WS 21/22

| About this lecture | Historical background | Components and Terms | Reference Models | <b>Topologies</b><br>00000000000 |
|--------------------|-----------------------|----------------------|------------------|----------------------------------|
| Related que        | estions               |                      |                  |                                  |

# 🔼 YouTube





- How do you access videos on YouTube?
- What's the deal with a *lag* in online gaming?
- Who can read my mails?
- How can we transmit data through the air (aka wireless networking)?



| About this lecture<br>○○○○○○○○○○○○●○ | Historical background | Components and Terms | Reference Models | <b>Topologies</b><br>00000000000 |
|--------------------------------------|-----------------------|----------------------|------------------|----------------------------------|
| Objective                            |                       |                      |                  |                                  |

At the end of this course, you should ....

- understand what the term "online" means,
- be able to explain what the Internet is,
- know how computers communicate,
- know what protocols are,
- be familiar with the layers of a network stack,
- understand how the data finds its way, and
- be conscious of security and privacy concerns of computer networks.

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies |
|--------------------|-----------------------|----------------------|------------------|------------|
| Motivation         |                       |                      |                  |            |

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies |
|--------------------|-----------------------|----------------------|------------------|------------|
| Motivation         |                       |                      |                  |            |

Good case: curiosity and willingness to learn

| About this lecture | Historical background | Components and Terms | Reference Models | <b>Topologies</b><br>0000000000 |
|--------------------|-----------------------|----------------------|------------------|---------------------------------|
| Motivation         |                       |                      |                  |                                 |

- Good case: curiosity and willingness to learn
- Best case: already interested in Computer Networks

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies |
|--------------------|-----------------------|----------------------|------------------|------------|
| Motivation         |                       |                      |                  |            |

- Good case: curiosity and willingness to learn
- Best case: already interested in Computer Networks
- Pass the exam

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies |
|--------------------|-----------------------|----------------------|------------------|------------|
| Motivation         |                       |                      |                  |            |

- Good case: curiosity and willingness to learn
- Best case: already interested in Computer Networks
- Pass the exam

### My motivation

- Like to teach
- Computer Networks are of utter importance (and super interesting)
- Prepare you for your job



| About this lecture | Historical background<br>●00000 | Components and Terms | Reference Models | Topologies |
|--------------------|---------------------------------|----------------------|------------------|------------|
| Agenda             |                                 |                      |                  |            |

- About this lecture
- Historical background
- Components and Terms
  - Reference Models
- Topologies

| About this lecture | Historical background | Components and Terms | Reference Models                        | Topologies |
|--------------------|-----------------------|----------------------|-----------------------------------------|------------|
| 000000000000000    | 00000                 | 000000000000000000   | 000000000000000000000000000000000000000 | 0000000000 |
|                    |                       |                      |                                         |            |

# The ARPANET

- 1957 Foundation of the Advanced Research Projects Agency (ARPA) by the US Dept of Defense (DoD) in response to *Sputnik*
- **1962** The idea of the 'Internet' as 'tool to create critical mass of intellectual resources' (Licklider, Taylor)
- 1967 Plan for the ARPANET was published Main architects: Vinton Cerf, Bob Kahn
- 1969 First Request for Comments (RFC) and first functioning network, rented 50 kBit/sec lines, Interface Message Processors by BBN



Historical background

**Components and Terms** 

**Reference Models** 

Topologies

### First Internet Protocols

- 1972 First public demo (remote login) using the Network Control Protocol (NCP) main use: terminal sessions, file transfer. Electronic Mail
- 1974 Basics of TCP/IP written on paper by Cerf/Kahn (IP=Internet Protocol, TCP=Transmission Control Protocol), standardization in the following years
- 1982 Transition towards IP version 4 (IPv4)<sup>3</sup>
- from 1983 Dissemination of TCP/IP due to publicly available



<sup>4</sup>deprecated, but still widely used <sup>4</sup>https://creativecommons.org/licenses/by-sa/4.0/deed.en Prof. Dr. Oliver Hahm - Computer Networks - Introduction - WS 21/22





| 00000000000000000000000000000000000000 | About this lecture                      | Historical background | Components and Terms                    | Reference Models                        | Topologies |
|----------------------------------------|-----------------------------------------|-----------------------|-----------------------------------------|-----------------------------------------|------------|
|                                        | 000000000000000000000000000000000000000 | 000000                | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000000 |

# Standardization

**1986** The Internet Engineering Task Force (IETF) is founded as an open standardization organization

- 1989 Foundation of RIPE (Réseaux IP Européens) as a forum for administrative and technical coordination of Internet development
- 1990 Proposal of a hypertext project at CERN in Geneva by Tim Berners-Lee and Robert Cailliau: cradle of the world wide web
- 1995 The specification of IPv6 (as a successor of IPv4) is published by the IETF

| 80) for more, or Help: |
|------------------------|

<sup>5</sup>http://line-mode.cern.ch/www/hypertext/WWW/TheProject.html Prof. Dr. Oliver Hahm - Computer Networks - Introduction - WS 21/22

22/71

| About this lecture | Historical background | Components and Terms                    | Reference Models                        | Topologies |
|--------------------|-----------------------|-----------------------------------------|-----------------------------------------|------------|
| 000000000000000    | 000000                | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000000 |
|                    |                       |                                         |                                         |            |

### Global Success

- 1996 First search engines with a site-scoring algorithm, e.g., Google search
- 1998 Start of the dot-com boom
- 2004 Start of Web 2.0 brought up blogs and RSS as well as services like Facebook or Twitter
- 2007 Apple's iPhone and Android started the "Mobile Revolution"
- 2008 Rise of the Internet of Things (IoT)



https://bit.ly/3jDGA3w

**Components and Terms** 

**Reference Models** 

Topologies

### Internet growth

- Amount of AS (Autonomous Systems, admin. routing domain)
  - Doubling every five years (currently, more than 100,000)
  - Stable core
  - Major growth at the fringe
- Traffic rate
  - Growth rate of about 26% per year estimated



kipedia.org/wiki/File:Internet map 1024.ipg

- Users
  - 2021: two third of the world population is "online" <sup>6</sup>
  - More than doubled during the last ten years <sup>6</sup>
  - Strongest growth outside the EU, Japan, and USA <sup>6</sup>

<sup>6</sup>Source: https://www.internetworldstats.com/stats.htm

Prof. Dr. Oliver Hahm – Computer Networks – Introduction – WS 21/22

| About this lecture | Historical background | Components and Terms | Reference Models                        | Topologies |
|--------------------|-----------------------|----------------------|-----------------------------------------|------------|
| 000000000000000000 | 000000                | ••••••••             | 000000000000000000000000000000000000000 | 0000000000 |
|                    |                       |                      |                                         |            |



- Historical background
- Components and Terms
  - Reference Models

### Topologies

Historical background

Components and Terms

Reference Models

Topologies

### Purpose of Computer Networks

The general task of a computer network is to enable communication among the participants.

### Resource sharing

 $\Rightarrow$  assign different tasks to different computers

 $\Rightarrow$  avoid bottlenecks

### Resource pooling

 $\Rightarrow$  combine the resources and functionalities of multiple machines

### Resource balancing

 $\Rightarrow$  increase the availability of the services by redundancy

Historical background

Components and Terms

Reference Models

Topologies

# Required Components to set up a Computer Network

• For setting up and running a computer network, these components are required:
- For setting up and running a computer network, these components are required:
  - **1**  $\geq$  2 computers with network services running
    - The devices are intended to communicate with each other or access shared resources
    - A network service provides a service for communication or shared resources usage
    - Computers in a network are called *hosts*

- For setting up and running a computer network, these components are required:
  - **1**  $\geq$  2 computers with network services running
    - The devices are intended to communicate with each other or access shared resources
    - A network service provides a service for communication or shared resources usage
    - Computers in a network are called *hosts*
  - 2 Transmission medium to send and receive data
    - Some sort of a *wire* (e.g., copper or fiber-optic cables)

- For setting up and running a computer network, these components are required:
  - **1**  $\geq$  2 computers with network services running
    - The devices are intended to communicate with each other or access shared resources
    - A network service provides a service for communication or shared resources usage
    - Computers in a network are called *hosts*
  - 2 Transmission medium to send and receive data
    - Some sort of a *wire* (e.g., copper or fiber-optic cables)
    - The air might serve as medium as well  $\rightarrow$  wireless data transmission

- For setting up and running a computer network, these components are required:
  - $1 \geq 2$  computers with network services running
    - The devices are intended to communicate with each other or access shared resources
    - A network service provides a service for communication or shared resources usage
    - Computers in a network are called *hosts*
  - 2 Transmission medium to send and receive data
    - Some sort of a *wire* (e.g., copper or fiber-optic cables)
    - The air might serve as medium as well  $\rightarrow$  wireless data transmission
  - 3 Network protocols
    - Rules that specify, how computers can communicate

- For setting up and running a computer network, these components are required:
  - **1**  $\geq$  2 computers with network services running
    - The devices are intended to communicate with each other or access shared resources
    - A network service provides a service for communication or shared resources usage
    - Computers in a network are called *hosts*
  - 2 Transmission medium to send and receive data
    - Some sort of a *wire* (e.g., copper or fiber-optic cables)
    - $\blacksquare$  The air might serve as medium as well  $\rightarrow$  wireless data transmission

#### 3 Network protocols

Rules that specify, how computers can communicate

Some of the technologies, concepts, and terms are used in a different contexts. For example, network services communicating on one host or connected peripheral devices within one computer device.

## **Network Services**

- A network service provides resources to other devices in the network
- Distinguished by their role:

Server Provides a network service

Client Uses (consumes) a network service

- If each communication partner is server and client both, the participants are called peers (⇒ Peer-to-Peer networks)
- The terms server, client and peer typically refer only to network services and not to hardware
  - Reason: It is common that client applications also run at servers

## Transmission Media

Different transmission media exists to setup a computer network.

## **1** Guided transmission media

- **Copper cable**: Data is transferred as electrical impulses
- Fiber-optic cable: Data is transferred as light impulses

### 2 Wireless transmission

- Wireless transmission can be realized directed and undirected
- Directed transmission can base on the following technologies:
  - Radio technology: Data is transferred as electromagnetic waves (radio waves) in the radio frequency spectrum (e.g., directed WLAN and satellite internet access)
  - Infrared: Data is transferred as electromagnetic waves in the spectral range (e.g., IrDA)
  - Laser: Data is transferred as light impulses via Laser Bridge
- Undirected wireless transmission is always based on radio technology (e.g., WLAN, cellular networks, terrestrial broadcasting and satellite broadcasting)

| About this lecture | Historical background | Components and Terms                    | Reference Models                        | Topologies |
|--------------------|-----------------------|-----------------------------------------|-----------------------------------------|------------|
| 0000000000000000   | 000000                | 000000000000000000000000000000000000000 | 000000000000000000000000000000000000000 | 0000000000 |
|                    |                       |                                         |                                         |            |

## Protocols

- A protocol is the set of all previously made agreements between communication partners
  - These agreements include:
    - Rules for connection establishment and termination
    - Method of synchronization between sender and receiver (if any)
    - Measures for the detection and treatment of transmission errors
    - Definition of valid messages (vocabulary)
    - Format and encoding of messages
- Protocols specify...
  - the syntax (= format of valid messages)
  - the semantics (= vocabulary and meaning of valid messages)



## Computer Networks distinguished by their Dimension (1/3)

- Depending on the dimension, different groups of computer networks are distinguished
- Personal Area Network (PAN) or Body Area Network (BAN)
  - Network of small mobile devices, such as smart phones
  - Technologies: USB, FireWire, WLAN, Bluetooth, IrDA
  - Major dimension: Few meters

## Local Area Network (LAN)

- Local network
- Range covers an apartment, building, company site or university campus
- Major dimension: 500-1000 m
  - Concrete values depend on the transmission medium used and when using wireless networks, also the environment and the transmission power
- Technologies: Ethernet, Wireless LAN (WLAN), Token Ring (outdated)

# Computer Networks distinguished by their Dimension (2/3)

## Metropolitan Area Network (MAN)

- Connects LANs
- Range covers a city or agglomeration area
- Major dimension: 100 km
- Technologies: Fiber-optic cables, WiMAX (IEEE 802.16)
  - Fiber-optic cables are used because of lesser attenuation (signal weakening) and higher data transmission rates

## Wide Area Network (WAN)

- Connects several networks
- Range covers a large geographic area inside a country or continent
- Major dimension: 1000 km
- Technologies: Ethernet (10 Gbit/s), Asynchronous Transfer Mode (ATM)

## Communication Modes

## Synchronous ("Rendez-Vous")

- Sender and receiver needs to be present at the same time
- May require to wait for the other side to become ready
- For example, phone calls or video conference

#### Asynchronous

- Sender and receiver may act independently from each other
- Requires buffering
- For example, instant messaging or E-Mail

Historical background

Components and Terms

Reference Models

Topologies

## Unicast and Broadcast

Unicast One-to-one communication, i.e., one host sends information to *exactly* one other host Broadcast One-to-all communication, i.e., one host sends information to all other hosts in the network



Source: public domain

Historical background

Components and Terms

Reference Models

Topologies

## Group Communication: Multicast and Anycast



Source: public domain

## **Connection-Orientation**

Network services may operate connection-oriented or connectionless.

connection-oriented the service operates stateful

- comprises three phases: connection establishment, data transfer, and connection termination
- a virtual path between the involved hosts is established
- sequent data is exchanged between the same hosts
- typically used for reliable services

connectionless the service operates stateless

- no path between the involved hosts is established
- typically used for low latency services

# Directional Dependence (Anisotropy) of Data Transmission

Given a communication channel with two (or more) endpoints:

- Simplex
  - $\blacksquare$  Only one side of the channel can send data  $\rightarrow$  the channel can be used in only one direction
  - Examples: Radio, TV, Pager
- Duplex (Full-duplex)
  - $\blacksquare$  Both sides of the channel are allowed to send  $\to$  the channel can be used in both directions simultaneously
  - Examples: Phone, Networks with twisted pair cables because they provide separate wires for send and receive

## Half-duplex

- $\blacksquare$  Both sides of the channel can send, but not simultaneously  $\to$  the channel can only be used in one direction at a time
- Examples:
  - Networks with fiber-optic cables or coaxial cables, because there exists just a single line to sending and receiving
  - Wireless networks with just a single channel

## Bandwidth, Throughput and Goodput

• Main factors, influencing the performance of a computer network:

- Bandwidth (→ throughput)
- Latency (delay)
- The bandwidth specifies how many bits can be transmitted within a period via the network
  - If a network has a bandwidth of 1 Mbit/s, one million bits can be transmitted per second in the ideal case
    - Thus, a bit has a *width* of 1 µs
    - If the bandwidth is doubled, the number of bits that can be transmitted per second double, too
  - Throughput is the actual achieved data rate (⇒ the bandwidth defines its upper bound)
  - Goodput is the actual rate of data the user benefits from

#### Latency

The latency of a network is the time, a message needs to travel from one end of the network to the most distant end

 ${\sf Latency} = {\sf Propagation \ delay} + {\sf Transmission \ delay} + {\sf Waiting \ time}$ 

 $Propagation \ delay = \frac{Distance}{Speed \ of \ light * Velocity \ factor}$ 

- Distance: Length of the network connection
- Speed of light: 299, 792, 458 m/s
- Velocity factor: Vacuum = 1, twisted pair cables = 0.6, optical fiber = 0.67, coaxial cables = 0.77

 $\label{eq:Transmission} \text{Transmission delay} = \frac{\text{Message size}}{\text{Bandwidth}}$ 

Transmission delay = 0, if the message consists only of a single bit

#### Waiting times are caused by network devices (e.g., Switches)

- They need to cache received data first before forwarding it
- ⇒ Waiting time = 0, if the network connection between sender and destination is just a single line or a single channel

Source: Larry L. Peterson, Bruce S. Davie. Computernetzwerke. dpunkt (2008)

Prof. Dr. Oliver Hahm - Computer Networks - Introduction - WS 21/22

# Bandwidth-Delay Product

Calculates the volume of a network connection

- Signals cannot be transmitted with infinite speed via the transmission media
  - The propagation speed is in any event limited by the speed of light and it depends on the velocity factor of the transmission medium
- The product of bandwidth and delay (latency) corresponds to the maximum number of bits that can reside inside the line between sender and receiver
- Example: A network with 100 Mbit/s bandwidth, and 10 ms latency

100, 000, 000 Bits/s  $\times$  0.01 s = 1, 000, 000 Bits

There are a maximum number of 1,000,000 Bits inside the network line

■ This is equivalent to 125,000 Bytes (approx. 123 kB)

Historical background

Components and Terms

Reference Models

Topologies

## How does a Computer Network work?

You need information about someone/something? What do you do?

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies |
|--------------------|-----------------------|----------------------|------------------|------------|
| Agenda             |                       |                      |                  |            |

- About this lecture
- Historical background
- Components and Terms
  - Reference Models

#### Topologies

## **Reference Models**

- Reference models are used to describe computer networks independently of concrete technologies
- Such a reference model consists of several layers
- Each layer addresses a particular aspect of communication and offers interfaces to the neighboring layer
- Each layer defines their own protocols that define syntax and semantics of parts of a transmitted message (e.g., header and trailer)
- These message parts are encapsulated
- Because each layer is complete in itself, single protocols can be modified or replaced without affecting all aspects of communication
- The most popular reference models are. . .
  - the TCP/IP reference model,
  - the ISO/OSI reference model, and
  - the hybrid reference model

Historical background

Components and Terms

Reference Models

Topologies

## "Philosopher-Translator-Secretary"-Architecture



Graphic by courtesy of Prof. Dr. Thomas C. Schmidt, HAW Hamburg

Historical background

## TCP/IP Reference Model or DoD Model

- Developed from 1970 onwards by the Department of Defense (DoD) in the Arpanet project
- Divides the required functionality to realize communication into 4 layers
- For each layer, it is specified, what functionality it provides
  - These requirements are implemented by communication protocols
    - Concrete implementation is not specified and can be implemented in different ways
    - Therefore, for each of the 4 layers, multiple protocols exist

| Number | Layer<br>TCP/IP (RFC 1122) | Layer<br>DoD (RFC 871)  | Protocols (Examples)       |
|--------|----------------------------|-------------------------|----------------------------|
| 4      | Application Layer          | Process Layer           | HTTP, FTP, SMTP, POP3,     |
|        |                            | -                       | DNS, SSH, Telnet           |
| 3      | Transport Layer            | Host to Host Lavor      | TCP, UDP                   |
| 2      | Internet Layer             | Tiost-to-Tiost Layer    | IPv4, IPv6, IPX            |
| 1      | Link Layer                 | Network Interface Layer | Ethernet, WLAN, ATM, FDDI, |
|        |                            |                         | PPP, Token Ring            |

Historical background

Components and Terms

Reference Models

Topologies

## TCP/IP Reference Model – Message Structure



Each layer adds additional information as header to the message

- Some protocols (e.g., Ethernet) add in the link layer not only a header but also a trailer at the end of the message
- The receiver analyzes the header (and trailer) on the same layer



Historical background

Components and Terms

Reference Models

**Physical Layer** 

Topologies

47/71

## Hybrid Reference Model

- The TCP/IP reference model is often presented in the literature (e.g., by Andrew S. Tanenbaum) as a 5-layer model
  - Reason: It makes sense to split the Link Layer into 2 layers, because they have different tasks
- This model is an extension of the TCP/IP model and is called hybrid reference model



We will mostly follow the hybrid reference model

Prof. Dr. Oliver Hahm – Computer Networks – Introduction – WS 21/22

## **OSI** Reference Model

- Some years after the TCP/IP reference model (1970s), the OSI (Open Systems Interconnection) reference model was developed from 1979 onwards
- 1983: Standardized by the Intern. Organization for Standardization (ISO)
- In contrast to the hybrid reference model, two additional layers are placed below the Application and above the Transport Layer



Historical background

Components and Terms

Reference Models

Topologies

## OSI Model Concepts

Central concepts of the OSI model are:

Services Define what the layer does, i.e., its semantics Interfaces Define how to access it Protocols Describe how the layer is implemented Historical background

Components and Terms

Reference Models

Topologies

## Physical Layer I

#### Transmits the ones and zeros

- Physical connection to the network
- Conversion of data into signals
- Protocol and transmission medium specify among others:
  - How is the information encoded on the transmission medium?
  - Can transmission take place simultaneously in both directions?

#### Hybrid Reference Model

Application Layer Transport Layer Network Layer Data Link Layer Physical Layer



At sender site: Signals are modulated onto the medium
At receiver site: Signals are demodulated from the medium
Devices: Repeater, Hub (Multiport Repeater)









Historical background

Components and Terms

Reference Models

Topologies

## Data Link Layer I

 Ensures error-free data exchange of frames between devices in physical networks

#### Hybrid Reference Model

| Application Layer |  |
|-------------------|--|
| Transport Layer   |  |
| Network Layer     |  |
| Data Link Layer   |  |
| Physical Layer    |  |

- Handles transmission errors with checksums
- Controls the access to the transmission medium (e.g., via CSMA/CD or CSMA/CA)
- Specifies physical network addresses (MAC addresses)



- At sender site: Packs the Network Layer packets into frames and transmits them (in a reliable way) via a physical network from one device to another
- At receiver site: Identifies frames in the bit stream from the Physical Layer
- Devices: Bridges, Layer-2-Switches (Multiport Bridges), WIFI APs, and Modems connect physical networks



Historical background

## Network Layer I

- Forwards packets between logical networks (over physical networks)
  - For this internetworking, the network layer defines logical addresses (most commonly IP addresses)
  - Each IP packet is routed independently to its destination (→ connectionless)

Hybrid Reference Model

| Application Layer |
|-------------------|
| Transport Layer   |
| Network Layer     |
| Data Link Layer   |
| Physical Layer    |

Network Layer II

- At sender site: Packs the segments of the Transport Layer in packets
- At receiver site: Unpacks the packets in the frames from the Data Link Layer
- Routers and Layer-3-Switches connect logical networks
- Usually the connectionless Internet Protocol (IP) is used
  - Other protocols (e.g., IPX) have been replaced by IP



Historical background

Components and Terms

Reference Models

Topologies

#### Transport Layer I

- Transports segments between processes on different devices via so-called end-to-end protocols
- Transport protocols implement different forms of communication
  - Connectionless communication, typically UDP (User Datagram Protocol) in TCP/IP networks
  - Connection-oriented communication, typically TCP (Transport Control Protocol) in TCP/IP networks

#### Hybrid Reference Model

Application Layer Transport Layer Network Layer Data Link Layer Physical Layer

#### Transport Layer II

- At sender site: Packs the data of the Application Layer into segments
- At receiver site: Unpacks the segments inside the packets from the network layer
- Addresses processes with port numbers

Combination of TCP/IP = de facto standard for computer networks

Historical background

Components and Terms

Reference Models

Topologies

## Application Layer

- Contains all protocols, that interact with the application programs (e.g., browser or email program)
- Here is the actual payload (e.g., HTML pages or emails), formatted according to the used application protocol
- Some Application Layer protocols: HTTP, FTP, SMTP, POP3, DNS, SSH, Telnet






# OSI only: Session Layer

- **Controls the dialogues** (connections) between processes
- Provides the following services
  - checkpointing (and recovery)
  - authentication
  - authorization
- Relevant protocols of the Session Layer are H.245, L2TP, PAP, and SOCKS
- Session Layer services are commonly used for RPCs (cf. lecture Distributed Systems)

## OSI only: Presentation Layer

#### • Contains rules for setting the format (presentation) of messages

- The sender can notify the receiver that a message has a specific **format** (e.g., ASCII) to make conversion happen, which is perhaps necessary
- Data records can be specified here with fields (e.g., name, student ID number...)
- Data types and their length can be defined here
- **Compression and encryption** could be implemented by this layer

The Presentation Layer is seldom used in practice, because all tasks intended to this layer are fulfilled by Application Layer protocols today

Historical background

## Reference Models – Summary

- Conclusion: The hybrid reference model illustrates the functioning of computer networks in a realistic way
  - It distinguishes between the Physical Layer and Data Link Layer
    - This is useful, because the objectives differ a lot
  - It does not subdivide the Application Layer
    - This is less helpful and often not realized in practice
    - Functionalities, which are intended for Session Layer and Presentation Layer, are provided by Transport or Application Layer protocols and services



| About this lecture | Historical background | Components and Terms | Reference Models | Topologies<br>●000000000 |
|--------------------|-----------------------|----------------------|------------------|--------------------------|
| Agenda             |                       |                      |                  |                          |

- About this lecture
- Historical background
- Components and Terms
  - Reference Models
- Topologies

# Topologies of Computer Networks

- The topology of a computer network...
  - determines how the communication partners are connected with each other
  - affects its reliability a lot
- The structure of large-scale networks is often a combination of different topologies
- Physical and logical topology may differ
  - Physical topology: Describes the wiring
  - Logical topology: Describes the flow of data between the terminal devices
- Topologies are graphically represented with nodes and edges



| About this lecture | Historical background | Components and Terms | Reference Models | Topologies<br>○○●○○○○○○○ |
|--------------------|-----------------------|----------------------|------------------|--------------------------|
|                    |                       |                      |                  |                          |

## Bus Network

- All terminal devices are connected via a shared communication medium – the bus
  - No active components between the terminal devices and the shared communication cable
    - If a node fails, it does not affect the network itself
    - Advantage: Cheap to implement
      - In the past, Hubs and Switches have been expensive
    - **Drawback**: Shared communication cable fails ⇒ Complete network fails
    - Only a single node can send data at each point in time

       otherwise, collisions will occur
      - A media access control method like CSMA/CD is required

- Examples:
  - (original) Ethernet, CAN, I2C

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies<br>○○○●○○○○○○ |
|--------------------|-----------------------|----------------------|------------------|--------------------------|
|                    |                       |                      |                  |                          |

# Ring Network



- Connects node to node
- All data is transferred from nodes to nodes until the destination is reached
- Disruption of a single link ⇒ network failure

Each node is also a repeater, which amplifies the signal

- For that reason, large-sized rings (transmission medium dependent) are possible
- Maximum ring length for Token Ring: 800 m
- Examples:
  - Token Ring (logical): 4-16 Mbps
  - Fiber Distributed Data Interface (FDDI): 100-1000 Mbps
    - FDDI implements 2 rings
    - One is a secondary backup, in case the primary ring fails

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies<br>0000€00000 |
|--------------------|-----------------------|----------------------|------------------|--------------------------|
| Star Netwo         | rk                    |                      |                  |                          |



- Examples:
  - (modern) Ethernet
  - Token Ring (**physical**): 4-16 Mbps

Prof. Dr. Oliver Hahm – Computer Networks – Introduction – WS 21/22

- Fibre Channel (storage networks): 2-16 Gbps
- InfiniBand (cluster): 10-40 Gbps

- All nodes are connected directly with a central component (Hub or Switch)
- Failure of the central component leads to a failure of the network itself
  - The central component can be implemented in a redundant way
- Failure of a node do not cause a failure of the network itself
- Advantages: Expandability and stability

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies<br>00000●0000 |
|--------------------|-----------------------|----------------------|------------------|--------------------------|
| Mach Notw          | ork                   |                      |                  |                          |

- Each node is connected with one or more other nodes
  - In a fully connected mesh network, the nodes are all connected to each other
- If nodes or connections fail, communication inside the network is typically still possible because the frames are redirected



- Advantages: Failure safe (depends on the degree)
- Drawbacks: Cabling effort and energy consumption
- Additional challenge: complexity to find the best way from sender to receiver (cf. *Travelling salesman problem*)
- Examples:
  - Logical topology between Routers
  - Ad-hoc (wireless) networks

### Tree Network

- A dedicated root node exist with one or more edges
  - Every edge leads to a leaf node or to the root of another tree
- Several star topology networks are hierarchically connected
- Advantages:
  - Failure of a terminal device (leaf node) has no consequences
  - Good expandability and long distances are possible
  - Well suited for searching and sorting algorithms
- Drawbacks:
  - When a node fails, the complete (sub-)tree behind is no longer accessible
  - In a large tree, the root may become a bottleneck because the communication from one half of the tree to the other half always needs to pass the root



- Example:
  - Connecting Hubs or Switches via an uplink port

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies<br>0000000●00 |
|--------------------|-----------------------|----------------------|------------------|--------------------------|
| Cellular Ne        | twork                 |                      |                  |                          |

- Implemented by wireless networks
- Cell: Area where the nodes can communicate with the base station
- Advantage: Failure of nodes do not affect the network itself
- Drawback: Maximum dimension is limited by the number of base stations and their positions



- Only one nodes can send data at each point in time ⇒ otherwise, collisions will occur
  - A media access control method like CSMA/CA is required
- Examples:
  - Wireless LAN = WiFi (*IEEE 802.11*)
  - Global System for Mobile Communications (GSM)

| About this lecture | Historical background | Components and Terms | Reference Models | Topologies<br>00000000●0 |
|--------------------|-----------------------|----------------------|------------------|--------------------------|
| Current Sit        | uation                |                      |                  |                          |

- Today, Ethernet (1-10 Gbit/s) with Switches (⇒ star topology) is the standard for wired LAN
- Connecting Hubs and Switches implements a tree topology, if there are no loops in the cabling
- Cell topology is the standard for wireless networks
- Mesh topology is one possible use case of wireless networks and it is the logical topology between routers
- Bus and ring topologies are no longer used for new computer network infrastructures
  - 10BASE2 (Thin Ethernet) and 10BASE5 (Thick Ethernet) are outdated since the mid/end-1990s
  - May 2004: IBM sells his complete Token Ring product lineup

Reference Models

Topologies

You should now be able to answer the following questions:

- What is a Computer Network and what are its objectives?
- What is the difference between bandwidth, throughput, and latency?
- What is a reference model and what do their difference layers represent?

